Skip to main content
Log in

Microscale chemical features of sediment-water interface in Hongfeng Lake

  • Special Column on Tectonics of Turkey and Iran and Comparison with Other Tethyan Domains
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

In situ microscale distributions of O2, H2S, pH and redox potential in sediments of Hongfeng Lake, SW China, were investigated using the powerful microsensor technique. Our results show that O2 was depleted within the top 3.9 mm in surface sediments, and H2S was subsequently detected at ∼6.0 mm depth, and reached its maximum concentrations at ∼25 mm. The degradation of organic matter and reduction of sulfate might be the major pathways of producing H2S in sediments. pH rapidly reduced in surface layers mainly due to H+ release in the oxidation of organic matter. Eh also decreased sharply in surface sediments, probabl indicating the coexistence of Fe and Mn oxides with O2 in aerobic region. Furthermore, the programme of PROFILE was applied to model the O2 gradient, and good fit was obtained between the simulative values and the factual values both in sediments and in the diffusive boundary layer (DBL). The results indicate that the depth-integrated O2 consumption rates within sediments were 0.083 and 0.134 nmol·m−3·s−1 in site S1 and site S2, respectively. In addition, there were distinct DBL in two sediment profiles, with 1.2 mm thickness in S1 and 0.9 mm thickness in S2. The diffusive fluxes of O2 within the DBL were 67.13 nmol·m−2·s−1 in S1 and 88.54 nmol·m−2·s−1 in S2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg, P., Risgaard-Petersen, N., Rysgaard, S., 1998. Interpretation of Measured Concentration Profiles in Sediment Pore Water. Limnology and Oceanography, 43(7): 1500–1510. doi:10.4319/lo.1998.43.7.1500

    Article  Google Scholar 

  • Berner, R. A., 1981. A New Geochemical Classification of Sedimentary Environments. SEPM Journal of Sedimentary Research, 51: 359–365. doi:10.1306/212f7c7f-2b24-11d7-8648000102c1865d

    Google Scholar 

  • Brandl, H., Hanselmann, K. W., 1991. Evaluation and Application of Dialysis Porewater Samplers for Microbiological Studies at Sediment-Water Interfaces. Aquatic Sciences, 53(1): 55–73. doi:10.1007/bf00877075

    Article  Google Scholar 

  • Canfield, D. E., 1994. Factors Influencing Organic Carbon Preservation in Marine Sediments. Chemical Geology, 114(3–4): 315–329. doi:10.1016/0009-2541(94)90061-2

    Article  Google Scholar 

  • Chen, J. A., Zhang, W., Zhang, R. Y., et al., 2010. Time and Spatial Distribution Characteristics of Nitrogen and Phosphorus in the Sediment of Lake Hongfeng. Proceedings of the 13th World Lake Conference, Wuhan. 2226–2230

    Google Scholar 

  • Conley, D. J., Paerl, H. W., Howarth, R. W., et al., 2009. ECOLOGY: Controlling Eutrophication: Nitrogen and Phosphorus. Science, 323(5917): 1014–1015. doi:10.1126/science.1167755

    Article  Google Scholar 

  • de Beer, D. D., Sauter, E., Niemann, H., et al., 2006. In Situ Fluxes and Zonation of Microbial Activity in Surface Sediments of the Håkon Mosby Mud Volcano. Limnology and Oceanography, 51(3): 1315–1331. doi:10.4319/lo.2006.51.3.1315

    Article  Google Scholar 

  • Ding, S. M., Sun, Q., Xu, D., 2010a. Development of the DET Technique for High-Resolution Determination of Soluble Reactive Phosphate Profiles in Sediment Pore Waters. International Journal of Environmental Analytical Chemistry, 90(14–15): 1130–1138. doi:10.1080/03067310903434733

    Article  Google Scholar 

  • Ding, S. M., Xu, D., Sun, Q., et al., 2010b. Measurement of Dissolved Reactive Phosphorus Using the Diffusive Gradients in Thin Films Technique with a High-Capacity Binding Phase. Environmental Science & Technology, 44(21): 8169–8174. doi:10.1021/es1020873

    Article  Google Scholar 

  • Elberling, B., Damgaard, L. R., 2001. Microscale Measurements of Oxygen Diffusion and Consumption in Subaqueous Sulfide Tailings. Geochimica et Cosmochimica Acta, 65(12): 1897–1905. doi:10.1016/s0016-7037(01)00574-9

    Article  Google Scholar 

  • Fenchel, T., 1996. Worm Burrows and Oxic Microniches in Marine Sediments. 2. Distribution Patterns of Ciliated Protozoa. Marine Biology, 127(2): 297–301. doi:10.1007/bf00942115

    Article  Google Scholar 

  • Feng, Y. Q., Xia, P., Zhang, M. S., et al., 2011. Analysis on Eutrophication Features of Hongfeng Reservoir on Guizhou Plateau. Journal of Guizhou Normal University (Nat. Sci.), 29(3): 30–35 (in Chinese with English Abstract)

    Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., et al., 1979. Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic: Suboxic Diagenesis. Geochimica et Cosmochimica Acta, 43(7): 1075–1090. doi:10.1016/0016-7037(79)90095-4

    Article  Google Scholar 

  • Glud, R. N., 2008. Oxygen Dynamics of Marine Sediments. Marine Biology Research, 4(4): 243–289. doi:10.1080/17451000801888726

    Article  Google Scholar 

  • Glud, R. N., Gundersen, J. K., Jørgensen, B. B., et al., 1994. Diffusive and Total Oxygen Uptake of Deep-Sea Sediments in the Eastern South Atlantic Ocean: In Situ and Laboratory Measurements. Deep Sea Research Part I: Oceanographic Research Papers, 41(11–12): 1767–1788. doi:10.1016/0967-0637(94)90072-8

    Article  Google Scholar 

  • Glud, R. N., Wenzhöfer, F., Tengberg, A., et al., 2005. Distribution of Oxygen in Surface Sediments from Central Sagami Bay, Japan: In-Situ Measurements by Microelectrodes and Planar Optodes. Deep Sea Research Part I: Oceanographic Research Papers, 52(10): 1974–1987. doi:10.1016/j.dsr.2005.05.004

    Article  Google Scholar 

  • Gundersen, J. K., Jørgensen, B. B., 1990. Microstructure of Diffusive Boundary Layers and the Oxygen Uptake of the Sea Floor. Nature, 345(6276): 604–607. doi:10.1038/345604a0

    Article  Google Scholar 

  • Holmkvist, L., Ferdelman, T. G., Jørgensen, B. B., 2011. A Cryptic Sulfur Cycle Driven by Iron in the Methane Zone of Marine Sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica Acta, 75(12): 3581–3599. doi:10.1016/j.gca.2011.03.033

    Article  Google Scholar 

  • Hulthe, G., Hulth, S., Hall, P. O. J., 1998. Effect of Oxygen on Degradation Rate of Refractory and Labile Organic Matter in Continental Margin Sediments. Geochimica et Cosmochimica Acta, 62(8): 1319–1328. doi:10.1016/s0016-7037(98)00044-1

    Article  Google Scholar 

  • Jeroschewski, P., Steuckart, C., Kühl, M., 1996. An Amperometric Microsensor for the Determination of H2S in Aquatic Environments. Analytical Chemistry, 68(24): 4351–4357. doi:10.1021/ac960091b

    Article  Google Scholar 

  • Jiang, C. H., Hu, J. W., Huang, X. F., et al., 2011. Phosphorus Speciation in Sediments of Lake Hongfeng, China. Chinese Journal of Oceanology and Limnology, 29(1): 53–62. doi:10.1007/s00343-011-9047-4

    Article  Google Scholar 

  • Jørgensen, B. B., Revsbech, N. P., 1983. Colorless Sulfur Bacteria Beggiatoa spp. and Thiovulum spp. in O2 and H2S Microgradients. Applied and environmental Microbiology, 45: 1261–1270

    Google Scholar 

  • Kamp, A., Stief, P., Schulz-Vogt, H. N., 2006. Anaerobic Sulfide Oxidation with Nitrate by a Freshwater Beggiatoa Enrichment Culture. Applied and Environmental Microbiology, 72(7): 4755–4760. doi:10.1128/aem.00163-06

    Article  Google Scholar 

  • Kristensen, E., Holmer, M., 2001. Decomposition of Plant Materials in Marine Sediment Exposed to Different Electron Acceptors (O2, NO3 -, and SO4 2-), with Emphasis on Substrate Origin, Degradation Kinetics, and the Role of Bioturbation. Geochimica et Cosmochimica Acta, 65(3): 419–433. doi:10.1016/s0016-7037(00)00532-9

    Article  Google Scholar 

  • Krom, M. D., Davison, P., Zhang, H., et al., 1994. High-Resolution Pore-Water Sampling with a Gel Sampler. Limnology and Oceanography, 39(8): 1967–1972. doi:10.4319/lo.1994.39.8.1967

    Article  Google Scholar 

  • Kuhl, M., Revsbech, N. P., 2001. Biogeochemical Microsensors for Boundary Layer Studies. In: Boudreau, B. P., Jørgensen, B. B., eds., The Benthic Boundary Layer. Oxford Univ. Press, Oxford. 180–210

    Google Scholar 

  • Kuivila, K. M., Murray, J. W., Devol, A. H., et al., 1989. Methane Production, Sulfate Reduction and Competition for Substrates in the Sediments of Lake Washington. Geochimica et Cosmochimica Acta, 53(2): 409–416. doi:10.1016/0016-7037(89)90392-x

    Article  Google Scholar 

  • Møller, M. M., Nielsen, L. P., Jørgensen, B. B., 1985. Oxygen Responses and Mat Formation by Beggiatoa sp. Applied and Environmental Microbiology, 50: 373–382

    Google Scholar 

  • Nelson, D. C., Jørgensen, B. B., Revsbech, N. P., 1986. Growth Pattern and Yield of a Chemoautotrophic Beggiatoa sp. in Oxygen-Sulfide Microgradients. Applied and Environmental Microbiology, 52(2): 225–233

    Google Scholar 

  • Paerl, H. W., Pinckney, J. L., 1996. A Mini-Review of Microbial Consortia: Their Roles in Aquatic Production and Biogeochemical Cycling. Microbial Ecology, 31(3): 225–247. doi:10.1007/bf00171569

    Article  Google Scholar 

  • Pedersen, O., Pulido, C., Rich, S. M., et al., 2011. In Situ O2 Dynamics in Submerged Isoetes Australis: Varied Leaf Gas Permeability Influences Underwater Photosynthesis and Internal O2. Journal of Experimental Botany, 62(13): 4691–4700. doi:10.1093/jxb/err193

    Article  Google Scholar 

  • Rasmussen, H., Jørgensen, B., 1992. Microelectrode Studies of Seasonal Oxygen Uptake in a Coastal Sediment: Role of Molecular Diffusion. Marine Ecology Progress Series, 81: 289–303. doi:10.3354/meps081289

    Article  Google Scholar 

  • Reiners, C. E., Glud, R. N., 2000. In Situ Chemical Sensor Measurement at the Sediment-Water Interface. Chemical Sensors in Oceanography, 1: 249

    Google Scholar 

  • Revsbech, N. P., 1989. An Oxygen Microsensor with a Guard Cathode. Limnology and Oceanography, 34(2): 474–478. doi:10.4319/lo.1989.34.2.0474

    Article  Google Scholar 

  • Revsbech, N. P., Jørgensen, B. B., 1986. Microelectrodes: Their Use in Microbial Ecology. Advances in Microbial Ecology, 9: 293–352

    Article  Google Scholar 

  • Risgaard-Petersen, N., Revil, A., Meister, P., et al., 2012. Sulfur, Iron-, and Calcium Cycling Associated with Natural Electric Currents Running through Marine Sediment. Geochimica et Cosmochimica Acta, 92: 1–13. doi:10.1016/j.gca.2012.05.036

    Article  Google Scholar 

  • Sayama, M., Risgaard-Petersen, N., Nielsen, L. P., et al., 2005. Impact of Bacterial NO3-Transport on Sediment Biogeochemistry. Applied and Environmental Microbiology, 71(11): 7575–7577. doi:10.1128/aem.71.11.7575-7577.2005

    Article  Google Scholar 

  • Schulz, H. N., de Beer, D., 2002. Uptake Rates of Oxygen and Sulfide Measured with Individual Thiomargarita Namibiensis Cells by Using Microelectrodes. Applied and Environmental Microbiology, 68(11): 5746–5749. doi:10.1128/aem.68.11.5746-5749.2002

    Article  Google Scholar 

  • Stal, L. J., Gemerden, H., Krumbein, W. E., 1985. Structure and Development of a Benthic Marine Microbial Mat. FEMS Microbiology Letters, 31(2): 111–125. doi:10.1111/j.1574-6968.1985.tb01138.x

    Article  Google Scholar 

  • Tankéré, S. P. C., Bourne, D. G., Muller, F. L. L., et al., 2002. Microenvironments and Microbial Community Structure in Sediments. Environmental Microbiology, 4(2): 97–105. doi:10.1046/j.1462-2920.2002.00274.x

    Article  Google Scholar 

  • Thamdrup, B., Finster, K., Fossing, H., et al., 1994. Thiosulfate and Sulfite Distributions in Porewater of Marine Sediments Related to Manganese, Iron, and Sulfur Geochemistry. Geochimica et Cosmochimica Acta, 58(1): 67–73. doi:10.1016/0016-7037(94)90446-4

    Article  Google Scholar 

  • Thauer, R. K., Jungerman, K., Decker, K., 1977. Energy Conservation in Chemotrophic Anaerobic Bacteria. Bacterial Review, 41: 100–180

    Google Scholar 

  • Wang, F. S., Liu, C. Q., Liang, X. B., et al., 2003. Microbial Sulfate Reduction and Isotopic Characteristics at Sediment-Water Interface of Aha Lake. Quaternary Sciences. 23(5): 582 (in Chinese)

    Google Scholar 

  • Wang, J. F., Chen, J. A., Yang, Y. Q., et al., 2012. Physical and Chemical Characteristics of Water in Lake Hongfeng during the Disappearance of Seasonal Stratification. Research of Environmental Sciences, 25(8): 845–851 (in Chinese with English Abstract). doi:10.13198/j.res.2012.08.4.wangjf.009

    Google Scholar 

  • Wu, F. C., Qing, H. R., Wan, G. J., et al., 1997. Geochemistry of HCO3–at the Sediment-Water Interface of Lakes from the Southwestern Chinese Plateau. Water, Air, & Soil Pollution, 99(1–4): 381–389. doi:10.1007/bf02406878

    Google Scholar 

  • Xu, D., Wu, W., Ding, S. M., et al., 2012. A High-Resolution Dialysis Technique for Rapid Determination of Dissolved Reactive Phosphate and Ferrous Iron in Pore Water of Sediments. Science of the Total Environment, 421/422: 245–252. doi:10.1016/j.scitotenv.2012.01.062

    Article  Google Scholar 

  • Zhan, Y. H., Guo, H. M., Wang, Y., et al., 2014. Evolution of Groundwater Major Components in the Hebei Plain: Evidences from 30-Year Monitoring Data. Journal of Earth Science, 25(3): 563–574. doi:10.1007/s12583-014-0445-3

    Article  Google Scholar 

  • Zhang, L., Wang, L., Yin, K. D., et al., 2014. Spatial and Seasonal Variations of Nutrients in Sediment Profiles and Their Sediment-Water Fluxes in the Pearl River Estuary, Southern China. Journal of Earth Science, 25(1): 197–206. doi:10.1007/s12583-014-0413-y

    Article  Google Scholar 

  • Zhang, R. Y., Wu, F. C., Liu, C. Q., et al., 2008. Characteristics of Organic Phosphorus Fractions in Different Trophic Sediments of Lakes from the Middle and Lower Reaches of Yangtze River Region and Southwestern Plateau, China. Environmental Pollution, 152(2): 366–372. doi:10.1016/j.envpol.2007.06.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing’an Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, J., Dai, Z. et al. Microscale chemical features of sediment-water interface in Hongfeng Lake. J. Earth Sci. 27, 1038–1044 (2016). https://doi.org/10.1007/s12583-015-0618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-015-0618-8

Key words

Navigation