Skip to main content
Log in

The reconnaissance of mineral resources through aster data-based image processing, interpreting and ground inspection in the Jiafushaersu area, West Junggar, China

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data covering the Jiafushaersu area in Xinjiang were used for mapping lithology and hydrothermal alteration. The study area situates at a potential mineralization zone in relation to small hypabyssal granodiorite or quartz monzonite intrusions along the margin of granitoid batholiths of Darbut foot wall. The false colour composition of bands 521 and the first three principal component analyses (PCA1, PCA2, PCA3) in RGB identify the lithological units and discriminate the small intrusions very well from the adjacent granitoid batholiths. PCA and spectral angle mapper (SAM) algorithm were employed to discriminate alteration minerals. The results indicate that the hydroxyl-bearing or ferric and less commonly carbonate types show good correlation with the quartz monzonite porphyry and aplite. Field verification led to finding of the Jiafushaersu molybdenum mineralization. The lithological and geochemical features imply that the molybdenum mineralization is close to the porphyry type. This study further verified that the foot wall of the Darbut suture could have served as a more important metallogenic district for the porphyry copper and molybdenum deposits. It is concluded that the ASTER data-based methods can be used as a powerful tool for small intrusion-type mineral resources targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Abrams, M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data Products for the High Spatial Resolution Imager on NASA’s Terra Platform. International Journal of Remote Sensing, 21(5): 847–859

    Article  Google Scholar 

  • Amer, R., Kusky, T., Ghulam, A., 2010. Lithological Mapping in the Central Eastern Desert of Egypt Using ASTER Data. Journal of African Earth Sciences, 56(2–3): 75–82

    Article  Google Scholar 

  • Amer, R., Kusky, T., El Mezayen, A., 2012. Remote Sensing Detection of Gold Related Alteration Zones in Um Rus Area, Central Eastern Desert of Egypt. Advances in Space Research, 49(1): 121–134

    Article  Google Scholar 

  • Ben-Dor, E., Kruse, F. A., 1994. The Relationship between the Size of Spatial Subsets of GER 63 Channel Scanner Data and the Quality of the Internal Average Relative Reflectance (IARR) Correction Technique. International Journal of Remote Sensing, 15(3): 683–690

    Article  Google Scholar 

  • Bishop, C. A., Liu, J. G., Mason, P. J., 2011. Hyperspectral Remote Sensing for Mineral Exploration in Pulang, Yunnan Province, China. International Journal of Remote Sensing, 32(9): 2409–2426

    Article  Google Scholar 

  • Carroll, A. R., Liang, Y., Graham, S. A., et al., 1990. Junggar Basin, Northwest China: Trapped Late Paleozoic Ocean. Tectonophysics, 181(1–4): 1–14

    Article  Google Scholar 

  • Chen, Y. J., 1996. Mineralization during Collisional Orogenesis and its Control of the Distribution of Gold Deposits in Junggar Mountains, Xinjiang, China. Acta Geologica Sinica, 70(3): 253–261 (in Chinese with English Abstract)

    Google Scholar 

  • Cheng, Y., Zhang, R., 2006. Mineralization Regularity of Cu-Au Deposits in the Baogutu Area, Western Jungar, Xinjiang. Geology and Prospecting, 42(4): 11–15 (in Chinese with English Abstract)

    Google Scholar 

  • Coleman, R. G., 1989. Continental Growth of Northwest China. Tectonics, 8(3): 621–635

    Article  Google Scholar 

  • Crosta, A. P., Souza-Filho, C. R., Azevedo, F., et al., 2003. Targeting Key Alteration Minerals in Epithermal Deposits in Patagonia, Argentina, Using ASTER Imagery and Principal Component Analysis. International Journal of Remote Sensing, 24(21): 4233–4240

    Article  Google Scholar 

  • Di Tommaso, I. D., Rubinstein, N., 2007. Hydrothermal Alteration Mapping Using ASTER Data in the Infiernillo Porphyry Deposit, Argentina. Ore Geology Reviews, 32(1–2): 275–290

    Article  Google Scholar 

  • Earth Remote Sensing Data Analysis Center (ERSDAC), 2003. Crosstalk Correction Software User’s Guide Version 1.0

    Google Scholar 

  • Feng, Y., Coleman, R. G., Tilton, G., et al., 1989. Tectonic Evolution of the West Junggar Region, Xinjiang, China. Tectonics, 8(4): 729–752

    Article  Google Scholar 

  • Galvão, L. S., Almeida-Filho, R., Vitorello, Í., 2005. Spectral Discrimination of Hydrothermally Altered Materials Using ASTER Short-Wave Infrared Bands: Evaluation in a Tropical Savannah Environment. International Journal of Applied Earth Observation and Geoinformation, 7(2): 107–114

    Article  Google Scholar 

  • Gan, Y. M., Yan, B. G., Li, Z. W., 1996. Geological Conditions, Distribution and Prospecting Indicators for Saertuohai-Anqi Gold Ore Belt in Toli County, Xinjiang. Shenyang Institute of Geology and Mineral Resources, eds., Main Types of Gold Deposits, Prospecting and Exploration Methods in China. Geological Publishing House, Beijing. 1–34 (in Chinese)

    Google Scholar 

  • Geological Brigade of Xinjiang Bureau of Geology and Mineral Resources (GBXBGMR), 1966. Geological Map of Kelamayi Region (1: 200 000). China Geological Survey Internal Report, Beijing (in Chinese)

    Google Scholar 

  • Green, A. A., Berman, M., Switzer, P., et al., 1988. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1): 65–74

    Article  Google Scholar 

  • Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., et al., 1998. Orogenic Gold Deposits: A Proposed Classification in the Context of their Crustal Distribution and Relationship to Other Gold Deposit. Ore Geology Review, 13(1–5): 7–27

    Article  Google Scholar 

  • Hall, E. W., Friedman, I., Nash, J. T., 1974. Fluid Inclusion and Light Stable Isotope Study of the Climax Molybdenum Deposits, Colourado. Economic Geology, 69(6): 884–901

    Article  Google Scholar 

  • Hendry, D. A. F., Gunow, A. J., Smith, R. P., et al., 1988. Chemical Differences between Minerals from Mineralizing and Barren Intrusions Associated with Molybdenum Mineralization at Climax, Colourado. Mineralogy and Petrology, 39(3–4): 251–263

    Article  Google Scholar 

  • Hunt, G. R., 1977. Spectral Signatures of Particulate Minerals in the Visible and Near Infrared. Geophysics, 42(3): 501–513

    Article  Google Scholar 

  • Kenea, N. H., 1997. Improved Geological Mapping Using Landsat TM Data, Southern Red Sea Hills, Sudan: PC and IHS Decorrelation Stretching. International Journal of Remote Sensing, 18(6): 1233–1244

    Article  Google Scholar 

  • Kruse, F. A., Boardman, J. W., Huntington, J. F., 2003. Comparison of Airborne Hyperspectral Data and EO-1 Hyperion for Mineral Mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1388–1400

    Article  Google Scholar 

  • Kruse, F. A., Lefkoff, A. B., Boardman, J. B., et al., 1993. The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of the Environment, 44(2–3): 145–163

    Article  Google Scholar 

  • Liu, L., Zhuang, D. F., Zhou, J., et al., 2011. Alteration Mineral Mapping Using Masking and Crosta Technique for Mineral Exploration in Mid-vegetated Areas: A Case Study in Areletuobie, Xinjiang (China). International Journal of Remote Sensing, 32(7): 1931–1944

    Article  Google Scholar 

  • Mars, J. C., Rowan, L. C., 2006. Regional Mapping of Phyllic- and Argillic-altered Rocks in the Zagros Magmatic Arc, Iran, Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data and Logical Operator Algorithms. Geosphere, 2(3): 161–186

    Article  Google Scholar 

  • Mars, J. C., Rowan, L. C., 2010. Spectral Assessment of New ASTER SWIR Surface Reflectance Data Products for Spectroscopic Mapping of Rocks and Minerals. Remote Sensing of Environment, 114(9): 2011–2025

    Article  Google Scholar 

  • Moghtaderi, A., Moore, F., Mohammadzadeh, A., 2007. The Application of Advanced Space-Borne Thermal Emission and Reflection (ASTER) Radiometer Data in the Detection of Alteration in the Chadormalu Paleocrater, Bafq Region, Central Iran. Journal of Asian Earth Sciences, 30(2): 238–252

    Article  Google Scholar 

  • Moore, F., Rastmanesh, F., Asadi, H., et al., 2008. Mapping Mineralogical Alteration Using Principal-Component Analysis and Matched Filter Processing in the Takab Area, North-West Iran, from ASTER Data. International Journal of Remote Sensing, 29(10): 2851–2867

    Article  Google Scholar 

  • Oyarzun, R., Marquez, A., Lillo, J., et al., 2001. Giant versus Small Porphyry Copper Deposits of Cenozoic Age in Northern Chile: Adakitic versus Normal Calc-Alkaline Magmatism. Mineralium Deposita, 36(8): 794–798

    Article  Google Scholar 

  • Pour, B. A., Hashim, M., 2011. Identification of Hydrothermal Alteration Minerals for Exploring of Porphyry Copper Deposit Using ASTER Data, SE Iran. Journal of Asian Earth Sciences, 42(6): 1309–1323

    Article  Google Scholar 

  • Rowan, L. C., Mars, J. C., 2003. Lithologic Mapping in the Mountain Pass, California Area Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data. Remote Sensing of Environment, 84(3): 350–366

    Article  Google Scholar 

  • Rowan, L. C., Mars, J. C., Simpson, C. J., 2005. Lithologic Mapping of the Mordor, NT, Australia Ultramafic Complex by Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment, 99(1–2): 105–126

    Article  Google Scholar 

  • Rowan, L. C., Schmidt, R. G., Mars, J. C., 2006. Distribution of Hydrothermally Altered Rocks in the Reko Diq, Pakistan Mineralized Area Based on Spectral Analysis of ASTER Data. Remote Sensing of Environment, 104(1): 74–87

    Article  Google Scholar 

  • Shen, P., Shen, Y., Liu, T. B., et al., 2009. Geochemical Signature of Porphyries in the Baogutu Porphyry Copper Belt, Western Junggar, NW China. Gondwana Research, 16(2): 227–242

    Article  Google Scholar 

  • Singh, A., Harrison, A., 1985. Standardized Principal Components. International Journal of Remote Sensing, 6(6): 883–896

    Article  Google Scholar 

  • Song, H. X., Liu, Y. L., Qu, W. J., et al., 2007. Geological Characters of Baogutu Porphyry Copper Deposit in Xinjiang, NW China. Acta Petrologica Sinica, 23(8): 1891–1988 (in Chinese with English Abstract)

    Google Scholar 

  • Stein, H. J., Hannah, J. L., 1985. Movement and Origin of Ore Fluids in Climax-Type Systems. Geology, 13(7): 469–474

    Article  Google Scholar 

  • Tangestani, M. H., Jaffari, L., Vincent, R. K., 2011. Spectral Characterization and ASTER-Based Lithological Mapping of An Ophiolite Complex: A Case Study from Neyriz Ophiolite, SW Iran. Remote Sensing of Environment, 115(9): 2243–2254

    Article  Google Scholar 

  • Tangestani, M. H., Mazhari, N., Agar, B., et al., 2008. Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data for Alteration Zone Enhancement in a Semiaridarea, Northern Shahr-e-Babak, SE Iran. International Journal of Remote Sensing, 29(10): 2833–2850

    Article  Google Scholar 

  • Xiao, X. C., Tang, Y. Q., Feng, Y. M., 1992. The Tectonics of Northern Xinjiang and Its Adjacent Areas. Geological Publishing House, Beijing. 34–37 (in Chinese with English Abstract)

    Google Scholar 

  • Xiong, Y., Khan, S. D., Mahmood, K., et al., 2011. Lithological Mapping of Bela Ophiolite with Remote-Sensing Data. International Journal of Remote Sensing, 32(16): 4641–4658

    Article  Google Scholar 

  • Yu, X. D., 1998. The Geological-Geochemical Prospecting Model and Its Results of the Hatu Gold Deposit, Xinjiang. Geological Exploration for Non-Ferrous Metals, 7(1): 27–30 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, B., Zhou, J., Wang, J. N., et al., 2009. Ore Prospecting Using Multi-Information in the Darbut Suture, Xinjiang. Contributions to Geology and Mineral Resources Research, 24(2): 166–171 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, C., Huang, X., 1992. The Ages and Tectonic Settings of Ophiolites in West Junggar, Xinjiang. Geological Review, 38(6): 509–524 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, X., Pazner, M., Duke, N., 2007. Lithological and Mineral Information Extraction for Gold Exploration Using ASTER Data in the South Chocolate Mountains, California. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4): 271–282

    Article  Google Scholar 

  • Zhu, L. M., Zhang, G. W., Guo, B., et al., 2010. Geochemistry of the Jinduicheng Mo-bearing Porphyry and Deposit, and Its Implications for the Geodynamic Setting in East Qinling, P. R. China. Chemie der Erde, 70(2): 159–174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Zhou, J., Yin, F. et al. The reconnaissance of mineral resources through aster data-based image processing, interpreting and ground inspection in the Jiafushaersu area, West Junggar, China. J. Earth Sci. 25, 397–406 (2014). https://doi.org/10.1007/s12583-014-0423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-014-0423-9

Key Words

Navigation