Skip to main content
Log in

Right ventricular systolic strain in patients with pulmonary hypertension: clinical feasibility, reproducibility, and correlation with ejection fraction

  • Original Investigation
  • Published:
Journal of Echocardiography Aims and scope Submit manuscript

Abstract

Background

Right ventricular (RV) systolic function is the major determinant of prognosis in patients with pulmonary hypertension (PH) with quantitative assessment by speckle-tracking strain echocardiography emerging as a viable candidate measure.

Method

We evaluated a prospective cohort of 231 patients with known or suspected PH referred for clinical echocardiography. All underwent measurement of RV free-wall systolic strain by sonographer staff. Digital images were recorded for blinded offline assessment by an expert echocardiographer. Reproducibility was assessed using the analysis methods of Bland–Altman and the Cohen’s-Kappa coefficient.

Results

RV strain was feasible in 213 (92%). The average RV systolic pressure was 59 ± 22 mmHg. RV systolic strain correlated with functional class, NT-proBNP, and the degree of RV enlargement. The average free-wall systolic strain was − 20 ± 7% (range  − 2 to  − 37%). The RV strain measures (clinical practice versus blinded expert) had an excellent correlation with a normal distribution (R2 0.87, p < 0.0001). By Bland–Altman analysis, the mean difference in measurement was − 1.7% (95% CI − 1.4 to − 2.1) with a correlation of 0.93, p value of < 0.0001. The reproducibility of RV strain for clinically relevant thresholds was also excellent (Kappa coefficients 0.68–0.83). There was no effect on the variability of strain measures across body mass, pulmonary pressures, or rhythm. RV strain correlated with RV diastolic volumes and ejection fraction with RV free wall strain being the best echo predictor for a reduction in ejection fraction.

Conclusion

Here RV systolic strain was found to be highly feasible and reproducible in clinical practice with excellent levels of agreement for clinically relevant thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2D:

2-Dimensional

6MWD:

6-Minute walk distance

BMI:

Body mass index

CI:

95% Confidence interval

MPI:

Myocardial performance index

NT-proBNP:

N-terminal proB-type natriuretic peptide

PA:

Pulmonary artery

PH:

Pulmonary hypertension

RA:

Right atria/atrial

RV:

Right ventricle

TAPSE:

Tricuspid annular plane systolic excursion

TR:

Tricuspid valve regurgitation

References

  1. Kane GC, Maradit-Kremers H, Slusser JP, Scott CG, Frantz RP, McGoon MD. Integration of clinical and hemodynamic parameters in the prediction of long-term survival in patients with pulmonary arterial hypertension. Chest. 2011;139(6):1285–93.

    Article  PubMed  Google Scholar 

  2. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, Levy PS, Pietra GG, Reid LM, Reeves JT, Rich S, Vreim CE, Williams GW, Wu M. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343–9.

    Article  CAS  PubMed  Google Scholar 

  3. Farber HW, Loscalzo J. Pulmonary arterial hypertension. N Engl J Med. 2004;351(16):1655–65.

    Article  CAS  PubMed  Google Scholar 

  4. McLaughlin VV, Presberg KW, Doyle RL, Abman SH, McCrory DC, Fortin T, Ahearn G. Prognosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004;126(1 Suppl):78S-92S.

    Article  PubMed  Google Scholar 

  5. Burgess MI, Mogulkoc N, Bright-Thomas RJ, Bishop P, Egan JJ, Ray SG. Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease. J Am Soc Echocardiogr. 2002;15(6):633–9.

    Article  PubMed  Google Scholar 

  6. Dell’Italia LJ. The right ventricle: anatomy, physiology, and clinical importance. Curr Probl Cardiol. 1991;16(10):653–720.

    Article  CAS  PubMed  Google Scholar 

  7. Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 2006;92(Suppl 1):i2-13.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Petitjean C, Rougon N, Cluzel P. Assessment of myocardial function: a review of quantification methods and results using tagged MRI. J Cardiovasc Magn Reson. 2005;7(2):501–16.

    Article  PubMed  Google Scholar 

  9. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, Chamera E, Corretti MC, Champion HC, Abraham TP, Girgis RE, Hassoun PM. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–41.

    Article  PubMed  Google Scholar 

  10. Sachdev A, Villarraga HR, Frantz RP, McGoon MD, Hsiao JF, Maalouf JF, Ammash NM, McCully RB, Miller FA, Pellikka PA, Oh JK, Kane GC. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest. 2011;139(6):1299–309.

    Article  PubMed  Google Scholar 

  11. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JA, Smiseth OA, Slørdahl SA. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006;47(4):789–93.

    Article  PubMed  Google Scholar 

  12. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J, Sengupta PP. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23(4):351–69.

    Article  PubMed  Google Scholar 

  13. Støylen A, Heimdal A, Bjørnstad K, Wiseth R, Vik-Mo H, Torp H, Angelsen B, Skjaerpe T. Strain rate imaging by ultrasonography in the diagnosis of coronary artery disease. J Am Soc Echocardiogr. 2000;13(12):1053–64.

    Article  PubMed  Google Scholar 

  14. Kosmala W, Plaksej R, Strotmann JM, Weigel C, Herrmann S, Niemann M, Mende H, Störk S, Angermann CE, Wagner JA, Weidemann F. Progression of left ventricular functional abnormalities in hypertensive patients with heart failure: an ultrasonic two-dimensional speckle tracking study. J Am Soc Echocardiogr. 2008;21(12):1309–17.

    Article  PubMed  Google Scholar 

  15. Popović ZB, Kwon DH, Mishra M, Buakhamsri A, Greenberg NL, Thamilarasan M, Flamm SD, Thomas JD, Lever HM, Desai MY. Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging. J Am Soc Echocardiogr. 2008;21(12):1299–305.

    Article  PubMed  Google Scholar 

  16. Hsiao JF, Koshino Y, Bonnichsen CR, Yu Y, Miller FA Jr, Pellikka PA, Cooper LT Jr, Villarraga HR. Speckle tracking echocardiography in acute myocarditis. Int J Cardiovasc Imaging. 2013;29(2):275–84.

    Article  PubMed  Google Scholar 

  17. Fukuda Y, Tanaka H, Sugiyama D, Ryo K, Onishi T, Fukuya H, Nogami M, Ohno Y, Emoto N, Kawai H, Hirata K. Utility of right ventricular free wall speckle-tracking strain for evaluation of right ventricular performance in patients with pulmonary hypertension. J Am Soc Echocardiogr. 2011;24(10):1101–8.

    Article  PubMed  Google Scholar 

  18. Pirat B, McCulloch ML, Zoghbi WA. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol. 2006;98(5):699–704.

    Article  PubMed  Google Scholar 

  19. Haeck ML, Scherptong RW, Marsan NA, et al. Prognostic value of right ventricular longitudinal peak systolic strain in patients with pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5:628–36.

    Article  PubMed  Google Scholar 

  20. Motoji Y, Tanaka H, Fukuda Y, et al. Efficacy of right ventricular free-wall longitudinal speckle-tracking strain for predicting long-term outcome in patients with pulmonary hypertension. Circ J. 2013;77:756–63.

    Article  PubMed  Google Scholar 

  21. Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, Kane GC. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging. 2013;6:711–21.

    Article  PubMed  Google Scholar 

  22. Park JH, Park MM, Farha S, et al. Impaired global right ventricular longitudinal strain predicts long-term adverse outcomes in patients with pulmonary arterial hypertension. J Cardiovasc Ultrasound. 2015;23:91–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. van Kessel M, Seaton D, Chan J, et al. Prognostic value of right ventricular free wall strain in pulmonary hypertension patients with pseudo-normalized tricuspid annular plane systolic excursion values. Int J Cardiovasc Imaging. 2016;32:905–12.

    Article  PubMed  Google Scholar 

  24. Moceri P, Bouvier P, Baudouy D, et al. Cardiac remodelling amongst adults with various aetiologies of pulmonary arterial hypertension including Eisenmenger syndrome-implications on survival and the role of right ventricular transverse strain. Eur Heart J Cardiovasc Imaging. 2016;18:1262–70.

    Article  Google Scholar 

  25. da Costa Junior AA, Ota-Arakaki JS, Ramos RP, et al. Diagnostic and prognostic value of right ventricular strain in patients with pulmonary arterial hypertension and relatively preserved functional capacity studied with echocardiography and magnetic resonance. Int J Cardiovasc Imaging. 2017;33:39–46.

    Article  PubMed  Google Scholar 

  26. Henein MY, Gronlund C, Tossavainen E, Soderberg S, Gonzalez M, Lindqvist P. Right and left heart dysfunction predict mortality in pulmonary hypertension. Clin Physiol Funct Imaging. 2017;37:45–51.

    Article  PubMed  Google Scholar 

  27. Hardegree EL, Sachdev A, Villarraga HR, Frantz RP, McGoon MD, Kushwaha SS, Hsiao JF, McCully RB, Oh JK, Pellikka PA, Kane GC. Role of serial quantitative assessment of right ventricular function by strain in pulmonary arterial hypertension. Am J Cardiol. 2013;111(1):143–8.

    Article  PubMed  Google Scholar 

  28. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713.

    Article  PubMed  Google Scholar 

  29. Tei C, Dujardin KS, Hodge DO, Bailey KR, McGoon MD, Tajik AJ, Seward SB. Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr. 1996;9(6):838–47.

    Article  CAS  PubMed  Google Scholar 

  30. Fenstad ER, Le RJ, Sinak LJ, Maradit-Kramers H, Ammash NM, Ayalew AM, Villarraga HR, Oh JK, Frantz RP, McCully RB, McGoon MD, Kane GC. Pericardial effusions in pulmonary arterial hypertension: Characteristics, prognosis and role of drainage. Chest. 2013;144(5):1530–8.

    Article  PubMed  Google Scholar 

  31. Mahapatra S, Nishimura RA, Oh JK, McGoon MD. The prognostic value of pulmonary vascular capacitance determined by Doppler echocardiography in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr. 2006;19(8):1045–50.

    Article  PubMed  Google Scholar 

  32. Simmonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D34-41.

    Article  Google Scholar 

  33. Shukla M, Park J-H, Thomas JD, Delgado V, Bax JJ, Kane GC, Howlett JG, Whiye JA, Fine NM. prognostic value of right ventricular strain using speckle-tracking echocardiography in pulmonary hypertension: a systematic review and meta-analysis. Can J Cardiol. 2018;34:1069–78.

    Article  PubMed  Google Scholar 

  34. Padang R, Chandrashekar N, Indrabhinduwat M, Scott CG, Luis SA, Chandrasekaran K, Michelena HI, Nkomo VT, Pislaru SV, Pellikka PA, Kane GC. Aetiology and outcomes in severe right ventricular dysfunction. Eur Heart J. 2020;41:1273–82.

    Article  PubMed  Google Scholar 

  35. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardigoraphy in adults: an update from the American society of Echocardiography and the European Association of Cardiac Imaging. J Am Soc Echocardiogr. 2015;28:1–39.

    Article  PubMed  Google Scholar 

  36. Badano LP, Ginghina C, Easaw J, Muraru D, Grillo MT, Lancellotti P, et al. Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects. Eur J Echocardiogr. 2010;11:27–37.

    Article  PubMed  Google Scholar 

  37. Muraru D, Badano LP, Nagata Y, Surkova E, Nabeshima Y, Genovese D, Otsuji Y, Guida V, Azzolina D, Palermo C, Takeuchi M. Development and prognostic validation of partition values to grade right ventricular dysfunction severity using 3D echocardiography. Eur Heart J Cardiovasc Imaging. 2020;21:10–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garvan C. Kane.

Ethics declarations

Conflict of Interest

Ramaimon Tunthong, Abdalla A. Salama, Conor M. Lane, Nowell M. Fine, Vidhu Anand, Ratnasari Padang, Sorin V. Pislaru, and Garvan C. Kane declare that they have no conflict of interest.

Human rights statements and informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. A waiver of informed consent was obtained from all patients in accordance with institutional policy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12574_2022_593_MOESM1_ESM.pptx

Supplemental Figure: The correlations between the measures of RV strain performed by a sonographer as part of routine clinical care versus those measured offline by an expert cardiologist were similar between obese (BMI ≥ 30 kg/m2) and non-obese (BMI < 30 kg/m2) individuals (A); between those in sinus rhythm or in atrial fibrillation (B) or those with a right ventricular systolic pressure (RVSP) of <50 mm Hg or ≥ 50 mm Hg (C)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunthong, R., Salama, A.A., Lane, C.M. et al. Right ventricular systolic strain in patients with pulmonary hypertension: clinical feasibility, reproducibility, and correlation with ejection fraction. J Echocardiogr 21, 105–112 (2023). https://doi.org/10.1007/s12574-022-00593-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12574-022-00593-6

Keywords

Navigation