Skip to main content
Log in

Abstract

We present detailed state of the art of statistical kinematic source models. The literature constitutes detailed first- and second-order characterization and the corresponding implementation in random field generations. The notable details include scaling relations, non-Gaussianity, and non-stationarity. The simplicity in the representation of kinematic slip fields has also paved the way to easy numerical implementation. Further, computational facility advancements have aided in realistic real-time simulation. Hence, these models can be suitably utilized to obtain more reliable synthetic ground motions and resultant hazards. This work also demonstrates the implementation of a non-Gaussian slip field in physics-based simulation for the Indo-Gangetic basin and studies the corresponding basin amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mai, P.M., Schorlemmer, D., Page, M., Ampuero, J.-P., Asano, K., Causse, M., Custodio, S., Fan, W., Festa, G., Galis, M., et al.: The earthquake-source inversion validation (siv) project. Seismol. Res. Lett. 87(3), 690–708 (2016)

    Article  Google Scholar 

  2. Wang, Y.: Seismic Inversion: Theory and Applications. Wiley, USA (2016)

    Book  Google Scholar 

  3. Andrews, D.: Rupture propagation with finite stress in antiplane strain. J. Geophys. Res. 81(20), 3575–3582 (1976)

    Article  Google Scholar 

  4. Oglesby, D.D., Mai, P.M.: Fault geometry, rupture dynamics and ground motion from potential earthquakes on the north anatolian fault under the sea of marmara. Geophys. J. Int. 188(3), 1071–1087 (2012)

    Article  Google Scholar 

  5. Aki, K., Richards, P.G.: Quantative Seismology: Theory and Methods. W. H. Freeman & Co., New York (1980)

    Google Scholar 

  6. Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999)

    Article  Google Scholar 

  7. Stupazzini, M., Paolucci, R., Igel, H.: Near-fault earthquake ground-motion simulation in the grenoble valley by a high-performance spectral element code. Bull. Seismol. Soc. Am. 99(1), 286–301 (2009)

    Article  Google Scholar 

  8. Dhanya, J., Gade, M., Raghukanth, S.T.G.: Ground motion estimation during 25th April 2015 nepal earthquake. Acta Geodaetica et Geophysica 52, 69–93 (2016). https://doi.org/10.1007/s40328-016-0170-8

    Article  Google Scholar 

  9. Song, S.G., Somerville, P.: Physics-based earthquake source characterization and modeling with geostatistics. Bull. Seismol. Soc. Am. 100(2), 482–496 (2010)

    Article  Google Scholar 

  10. Graves, R., Jordan, T.H., Callaghan, S., Deelman, E., Field, E., Juve, G., Kesselman, C., Maechling, P., Mehta, G., Milner, K., et al.: Cybershake: a physics-based seismic hazard model for southern california. Pure Appl. Geophys. 168(3), 367–381 (2011)

    Article  Google Scholar 

  11. Mai, P.M., Beroza, G.C.: Source scaling properties from finite-fault-rupture models. Bull. Seismol. Soc. Am. 90(3), 604–615 (2000)

    Article  Google Scholar 

  12. Dhanya, J., Raghukanth, S.T.G.: A non-gaussian random field model for earthquake slip. J. Seismol. 23(4), 889–912 (2019)

    Article  Google Scholar 

  13. Dhanya, J., Raghukanth, S.T.G.: A non-stationary random field model for earthquake slip. J. Seismol. 24(2), 423–441 (2020)

    Article  Google Scholar 

  14. Reid, H.F.: The elastic-rebound theory of earthquakes. Bulletin of the Department of Geology, University of California Publications, vol. 6, pp. 413–444 (1911)

  15. Burridge, R., Knopoff, L.: Body force equivalents for seismic dislocations. Bull. Seismol. Soc. Am. 54(6A), 1875–1888 (1964)

    Article  Google Scholar 

  16. Mai, P.M., Thingbaijam, K.: Srcmod: an online database of finite-fault rupture models. Seismol. Res. Lett. 85(6), 1348–1357 (2014)

    Article  Google Scholar 

  17. Komatitsch, D., Liu, Q., Tromp, J., Suss, P., Stidham, C., Shaw, J.H.: Simulations of ground motion in the los angeles basin based upon the spectral-element method. Bull. Seismol. Soc. Am. 94(1), 187–206 (2004)

    Article  Google Scholar 

  18. Mazzieri, I., Stupazzini, M., Guidotti, R., Smerzini, C.: Speed: Spectral elements in elastodynamics with discontinuous galerkin: a non-conforming approach for 3d multi-scale problems. Int. J. Numer. Methods Eng. 95(12), 991–1010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Olsen, K., Takedatsu, R.: The sdsu broadband ground-motion generation module bbtoolbox version 1.5. Seismol. Res. Lett. 86(1), 81–88 (2015)

    Article  Google Scholar 

  20. Graves, R., Pitarka, A.: Kinematic ground-motion simulations on rough faults including effects of 3d stochastic velocity perturbations. Bull. Seismol. Soc. Am. 106(5), 2136–2153 (2016)

    Article  Google Scholar 

  21. Haskell, N.: Total energy and energy spectral density of elastic wave radiation from propagating faults. Bull. Seismol. Soc. Am. 54(6A), 1811–1841 (1964)

    Article  Google Scholar 

  22. Haskell, N.A.: Elastic displacements in the near-field of a propagating fault. Bull. Seismol. Soc. Am. 59(2), 865–908 (1969)

    Article  Google Scholar 

  23. Brune, J.N.: Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75(26), 4997–5009 (1970)

    Article  Google Scholar 

  24. Gilbert, F.: Excitation of the normal modes of the earth by earthquake sources. Geophys. J. Int. 22(2), 223–226 (1971)

    Article  Google Scholar 

  25. Backus, G., Mulcahy, M.: Moment tensors and other phenomenological descriptions of seismic sources-i. continuous displacements. Geophys. J. Int. 46(2), 341–361 (1976)

    Article  MATH  Google Scholar 

  26. Trifunac, M.: A three-dimensional dislocation model for the san fernando, california, earthquake of february 9, 1971. Bull. Seismol. Soc. Am. 64(1), 149–172 (1974)

    Google Scholar 

  27. Hartzell, S.H., Frazier, G.A., Brune, J.N.: Earthquake modeling in a homogeneous half-space. Bull. Seismol. Soc. Am. 68(2), 301–316 (1978)

    Article  Google Scholar 

  28. Hartzell, S.H., Heaton, T.H.: Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 imperial valley, california, earthquake. Bull. Seismol. Soc. Am. 73(6A), 1553–1583 (1983)

    Article  Google Scholar 

  29. Wells, D.L., Coppersmith, K.J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 84(4), 974–1002 (1994)

    Google Scholar 

  30. Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N., Kowada, A.: Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismol. Res. Lett. 70(1), 59–80 (1999)

    Article  Google Scholar 

  31. Mai, P.M., Beroza, G.C.: A spatial random field model to characterize complexity in earthquake slip. J. Geophys. Res. Solid Earth 107(B11), 10 (2002)

    Article  Google Scholar 

  32. Lavallée, D., Liu, P., Archuleta, R.J.: Stochastic model of heterogeneity in earthquake slip spatial distributions. Geophys. J. Int. 165(2), 622–640 (2006)

    Article  Google Scholar 

  33. Raghukanth, S.T.G.: Intrinsic mode functions of earthquake slip distribution. Adv. Adapt. Data Anal. 2(02), 193–215 (2010)

    Article  MathSciNet  Google Scholar 

  34. Thingbaijam, K.K.S., Mai, P.M., Goda, K.: New empirical earthquake source-scaling laws. Bull. Seismol. Soc. Am. (2017). https://doi.org/10.1785/0120170017

    Article  Google Scholar 

  35. Raghukanth, S.T.G., Sangeetha, S.: A stochastic model for earthquake slip distribution of large events. Geomat. Nat. Hazards Risk 7(2), 493–521 (2016)

    Article  Google Scholar 

  36. Goda, K., Yasuda, T., Mori, N., Maruyama, T.: New scaling relationships of earthquake source parameters for stochastic tsunami simulation. Coast. Eng. J. 58(3), 1650010–1 (2016)

    Article  Google Scholar 

  37. Thingbaijam, K.K., Mai, P.M.: Evidence for truncated exponential probability distribution of earthquake slip. Bull. Seismol. Soc. Am. 106(4), 1802–1816 (2016)

    Article  Google Scholar 

  38. Sepúlveda, I., Liu, P.L.-F., Grigoriu, M., Pritchard, M.: Tsunami hazard assessments with consideration of uncertain earthquake slip distribution and location. J. Geophys. Res. Solid Earth 122(9), 7252–7271 (2017)

    Article  Google Scholar 

  39. Lekshmy, P.R., Raghukanth, S.T.G.: Stochastic earthquake source model for ground motion simulation. Earthq. Eng. Eng. Vibr. 18(1), 1–34 (2019)

    Article  Google Scholar 

  40. Dhabu, A.C., Sugumar, S., Raghukanth, S.T.G.: Characterization of strong motion generation regions of earthquake slip using extreme value theory. Pure Appl. Geophys. 176(8), 3567–3592 (2019)

    Google Scholar 

  41. Wang, X.-C., Wang, J.-T., Zhang, L., Li, S., Zhang, C.-H.: A multidimension source model for generating broadband ground motions with deterministic 3d numerical simulations. Bull. Seismol. Soc. Am. 111(2), 989–1013 (2021)

    Article  Google Scholar 

  42. Bracewell, R.N., Bracewell, R.N.: The Fourier Transform and Its Applications, vol. 31999. McGraw-Hill, New York (1986)

    MATH  Google Scholar 

  43. Hayes, G.P.: The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth Planet. Sci. Lett. 468, 94–100 (2017)

    Article  Google Scholar 

  44. Allen, T.I., Hayes, G.P.: Alternative rupture-scaling relationships for subduction interface and other offshore environments. Bull. Seismol. Soc. Am. 107(3), 1240–1253 (2017)

    Article  Google Scholar 

  45. Mai, P.M., Spudich, P., Boatwright, J.: Hypocenter locations in finite-source rupture models. Bull. Seismol. Soc. Am. 95(3), 965 (2005)

    Article  Google Scholar 

  46. Murotani, S., Miyake, H., Koketsu, K.: Scaling of characterized slip models for plate-boundary earthquakes. Earth Planets Space 60(9), 987–991 (2008)

    Article  Google Scholar 

  47. Lavallée, D., Archuleta, R.J.: Stochastic modeling of slip spatial complexities for the 1979 imperial valley, california, earthquake. Geophys. Res. Lett. (2003). https://doi.org/10.1029/2002GL015839

    Article  Google Scholar 

  48. Goda, K., Mai, P.M., Yasuda, T., Mori, N.: Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 tohoku earthquake. Earth Planets Space 66(1), 105 (2014)

    Article  Google Scholar 

  49. Gusev, A.: Statistics of the values of a normalized slip in the points of an earthquake fault. Izvestiya Phys. Solid Earth 47(3), 176–185 (2011)

    Article  MathSciNet  Google Scholar 

  50. Herrero, A., Bernard, P.: A kinematic self-similar rupture process for earthquakes. Bull. Seismol. Soc. Am. 84(4), 1216–1228 (1994)

    Article  Google Scholar 

  51. Bernard, P., Herrero, A., Berge, C.: Modeling directivity of heterogeneous earthquake ruptures. Bull. Seismol. Soc. Am. 86(4), 1149–1160 (1996)

    Google Scholar 

  52. Melgar, D., Hayes, G.P.: The correlation lengths and hypocentral positions of great earthquakesthe correlation lengths and hypocentral positions of great earthquakes. Bull. Seismol. Soc. Am. 109(6), 2582–2593 (2019)

    Article  Google Scholar 

  53. Ammon, C.J., Velasco, A.A., Lay, T., Wallace, T.C.: Foundations of Modern Global Seismology. Academic Press, USA (2020)

    Google Scholar 

  54. Bouchon, M., Vallée, M.: Observation of long supershear rupture during the magnitude 8.1 kunlunshan earthquake. Science 301(5634), 824–826 (2003)

    Article  Google Scholar 

  55. Yue, H., Lay, T., Freymueller, J.T., Ding, K., Rivera, L., Ruppert, N.A., Koper, K.D.: Supershear rupture of the 5 january 2013 craig, alaska (mw 7.5) earthquake. J. Geophys. Res. Solid Earth 118(11), 5903–5919 (2013)

    Article  Google Scholar 

  56. Bao, H., Ampuero, J.-P., Meng, L., Fielding, E.J., Liang, C., Milliner, C.W., Feng, T., Huang, H.: Early and persistent supershear rupture of the 2018 magnitude 7.5 palu earthquake. Nat. Geosci. 12(3), 200–205 (2019)

    Article  Google Scholar 

  57. Zhang, X., Feng, W., Du, H., Samsonov, S., Yi, L.: Supershear rupture during the 2021 mw 7.4 maduo, china, earthquake. Geophys. Res. Lett. 49(6), 2022–097984 (2022)

    Article  Google Scholar 

  58. Houston, H.: Influence of depth, focal mechanism, and tectonic setting on the shape and duration of earthquake source time functions. J. Geophys. Res. Solid Earth 106(B6), 11137–11150 (2001)

    Article  Google Scholar 

  59. Andrews, D.J.: A stochastic fault model: 1. static case. J. Geophys. Res. Solid Earth 85, 3867–3877 (1980). https://doi.org/10.1029/JB085iB07p03867

    Article  Google Scholar 

  60. Boore, D.M.: Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull. Seismol. Soc. Am. 73(6A), 1865–1894 (1983)

    Google Scholar 

  61. Frank, I.E., Todeschini, R.: The Data Analysis Handbook, vol. 14. Elsevier, USA (1994)

    Google Scholar 

  62. Tanioka, Y., Ruff, L.J.: Source time functions. Seismol. Res. Lett. 68(3), 386–400 (1997)

    Article  Google Scholar 

  63. Tinti, E., Fukuyama, E., Piatanesi, A., Cocco, M.: A kinematic source-time function compatible with earthquake dynamics. Bull. Seismol. Soc. Am. 95(4), 1211–1223 (2005)

    Article  Google Scholar 

  64. Kostrov, B.: Selfsimilar problems of propagation of shear cracks. J. Appl. Math. Mech. 28(5), 1077–1087 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  65. Nakamura, H., Miyatake, T.: An approximate expression of slip velocity time function for simulation of near-field strong ground motion. Jishin 53(1), 1–9 (2000)

    Google Scholar 

  66. Guatteri, M., Mai, P.M., Beroza, G.C., Boatwright, J.: Strong ground-motion prediction from stochastic-dynamic source models. Bull. Seismol. Soc. Am. 93(1), 301–313 (2003)

    Article  Google Scholar 

  67. Motazedian, D., Atkinson, G.M.: Stochastic finite-fault modeling based on a dynamic corner frequency. Bull. Seismol. Soc. Am. 95(3), 995–1010 (2005)

    Article  Google Scholar 

  68. Ruiz, J., Baumont, D., Bernard, P., Berge-Thierry, C.: New approach in the kinematic k- 2 source model for generating physical slip velocity functions. Geophys. J. Int. 171(2), 739–754 (2007)

    Article  Google Scholar 

  69. Vallée, M., Charléty, J., Ferreira, A.M., Delouis, B., Vergoz, J.: Scardec: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution. Geophys. J. Int. 184(1), 338–358 (2011)

    Article  Google Scholar 

  70. Vallée, M., Douet, V.: A new database of source time functions (stfs) extracted from the scardec method. Phys. Earth Planet. Inter. 257, 149–157 (2016)

    Article  Google Scholar 

  71. Boore, D.M., Di Alessandro, C., Abrahamson, N.A.: A generalization of the double-corner-frequency source spectral model and its use in the scec bbp validation exercise. Bull. Seismol. Soc. Am. 104(5), 2387–2398 (2014)

    Article  Google Scholar 

  72. Yin, J., Li, Z., Denolle, M.A.: Source time function clustering reveals patterns in earthquake dynamics. Seismol. Soc. Am. 92(4), 2343–2353 (2021)

    Google Scholar 

  73. Hirano, S.: Source time functions of earthquakes based on a stochastic differential equation. Sci. Rep. 12(1), 1–9 (2022)

    Article  Google Scholar 

  74. Geller, R.J.: Scaling relations for earthquake source parameters and magnitudes. Bull. Seismol. Soc. Am. 66(5), 1501–1523 (1976)

    Google Scholar 

  75. Leonard, M.: Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bull. Seismol. Soc. Am. 100(5A), 1971–1988 (2010)

    Article  Google Scholar 

  76. Lee, Y.-T., Ma, K.-F., Yen, Y.-T.: Heterogeneous slip distribution self-similarity on a fault surface. Terr. Atmos. Ocean. Sci. 27(2), 181–193 (2016)

    Article  Google Scholar 

  77. Skarlatoudis, A., Somerville, P., Thio, H.: Source-scaling relations of interface subduction earthquakes for strong ground motion and tsunami simulation. Bull. Seismol. Soc. Am. 106(4), 1652–1662 (2016)

    Article  Google Scholar 

  78. Hanks, T.C., Bakun, W.H.: A bilinear source-scaling model for m-log a observations of continental earthquakes. Bull. Seismol. Soc. Am. 92(5), 1841–1846 (2002)

    Article  Google Scholar 

  79. Wason, H., Das, R., Sharma, M.L.: Magnitude conversion problem using general orthogonal regression. Geophys. J. Int. 190(2), 1091–1096 (2012)

    Article  Google Scholar 

  80. Das, R., Wason, H., Sharma, M.L.: General orthogonal regression relations between body-wave and moment magnitudes. Seismol. Res. Lett. 84(2), 219–224 (2013)

    Article  Google Scholar 

  81. Stafford, P.J.: Source-scaling relationships for the simulation of rupture geometry within probabilistic seismic-hazard analysis. Bull. Seismol. Soc. Am. 104(4), 1620–1635 (2014)

    Article  Google Scholar 

  82. Kiratzi, A., Karakaisis, G., Papadimitriou, E., Papazachos, B.: Seismic source-parameter relations for earthquakes in greece. Pure Appl. Geophys. 123(1), 27–41 (1985)

    Article  Google Scholar 

  83. Konstantinou, K.I., Papadopoulos, G.A., Fokaefs, A., Orphanogiannaki, K.: Empirical relationships between aftershock area dimensions and magnitude for earthquakes in the mediterranean sea region. Tectonophysics 403(1–4), 95–115 (2005)

    Article  Google Scholar 

  84. Yen, Y.-T., Ma, K.-F.: Source-scaling relationship for m 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of taiwan. Bull. Seismol. Soc. Am. 101(2), 464–481 (2011)

    Article  Google Scholar 

  85. Miyakoshi, K., Somei, K., Yoshida, K., Kurahashi, S., Irikura, K., Kamae, K.: Scaling relationships of source parameters of inland crustal earthquakes in tectonically active regions. Pure Appl. Geophys. 177(5), 1917–1929 (2020)

    Article  Google Scholar 

  86. Cheng, J., Rong, Y., Magistrale, H., Chen, G., Xu, X.: Earthquake rupture scaling relations for mainland china. Seismol. Res. Lett. 91(1), 248–261 (2020)

    Article  Google Scholar 

  87. Wang, J.-H.: A review on scaling of earthquake faults. TAO Terr. Atmos. Ocean. Sci. 29(6), 5 (2018)

    Google Scholar 

  88. Brengman, C.M., Barnhart, W.D., Mankin, E.H., Miller, C.N.: Earthquake-scaling relationships from geodetically derived slip distributions. Bull. Seismol. Soc. Am. 109(5), 1701–1715 (2019)

    Article  Google Scholar 

  89. Kanamori, H., Anderson, D.L.: Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am. 65(5), 1073–1095 (1975)

    Google Scholar 

  90. Scholz, C.H.: Scaling laws for large earthquakes: consequences for physical models. Bull. Seismol. Soc. Am. 72(1), 1–14 (1982)

    MathSciNet  Google Scholar 

  91. Romanowicz, B.: Strike-slip earthquakes on quasi-vertical transcurrent faults: inferences for general scaling relations. Geophys. Res. Lett. 19(5), 481–484 (1992)

    Article  Google Scholar 

  92. Blaser, L., Krüger, F., Ohrnberger, M., Scherbaum, F.: Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull. Seismol. Soc. Am. 100(6), 2914–2926 (2010)

    Article  Google Scholar 

  93. Strasser, F.O., Arango, M., Bommer, J.J.: Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol. Res. Lett. 81(6), 941–950 (2010)

    Article  Google Scholar 

  94. Murotani, S., Satake, K., Fujii, Y.: Scaling relations of seismic moment, rupture area, average slip, and asperity size for m\(^\sim\) 9 subduction-zone earthquakes. Geophys. Res. Lett. 40(19), 5070–5074 (2013)

    Article  Google Scholar 

  95. Thingbaijam, K.K.S., Martin Mai, P., Goda, K.: New empirical earthquake source-scaling laws. Bull. Seismol. Soc. Am. 107(5), 2225–2246 (2017)

    Article  Google Scholar 

  96. Somerville, P.: Scaling relations between seismic moment and rupture area of earthquakes in stable continental regions. Earthq. Spectra 37(1), 1534–1549 (2021)

    Article  MathSciNet  Google Scholar 

  97. Pardo-Iguzquiza, E., Chica-Olmo, M.: The fourier integral method: an efficient spectral method for simulation of random fields. Math. Geol. 25(2), 177–217 (1993)

    Article  Google Scholar 

  98. Shinozuka, M., Deodatis, G.: Simulation of multi-dimensional gaussian stochastic fields by spectral representation. Appl. Mech. Rev. 49(1), 29–53 (1996)

    Article  Google Scholar 

  99. Vallée, M., Bouchon, M.: Imaging coseismic rupture in far field by slip patches. Geophys. J. Int. 156(3), 615–630 (2004)

    Article  Google Scholar 

  100. Baglione, E.: Characterization of the co-seismic slip field for large earthquakes (2016). Accessed 2019-02-20

  101. Graves, R.W.: Simulating seismic wave propagation in 3d elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am. 86(4), 1091–1106 (1996)

    Google Scholar 

  102. Graves, R.W., Pitarka, A.: Broadband ground-motion simulation using a hybrid approach. Bull. Seismol. Soc. Am. 100(5A), 2095–2123 (2010)

    Article  Google Scholar 

  103. Schmedes, J., Archuleta, R.J., Lavallée, D.: A kinematic rupture model generator incorporating spatial interdependency of earthquake source parameters. Geophys. J. Int. 192(3), 1116–1131 (2012)

    Article  Google Scholar 

  104. Song, S.G.: Developing a generalized pseudo-dynamic source model of m w 6.5–7.0 to simulate strong ground motions. Geophys. J. Int. 204(2), 1254–1265 (2016)

    Article  MathSciNet  Google Scholar 

  105. Savran, W., Olsen, K.: Kinematic rupture generator based on 3-d spontaneous rupture simulations along geometrically rough faults. J. Geophys. Res. Solid Earth 125(10), 2020–019464 (2020)

    Article  Google Scholar 

  106. Milner, K.R., Shaw, B.E., Goulet, C.A., Richards-Dinger, K.B., Callaghan, S., Jordan, T.H., Dieterich, J.H., Field, E.H.: Toward physics-based nonergodic psha: a prototype fully deterministic seismic hazard model for southern california. Bull. Seismol. Soc. Am. 111(2), 898–915 (2021)

    Article  Google Scholar 

  107. Williamson, A., Melgar, D., Rim, D.: The effect of earthquake kinematics on tsunami propagation. J. Geophys. Res. Solid Earth 124(11), 11639–11650 (2019)

    Article  Google Scholar 

  108. Dhanya, J., Raghukanth, S.: Implication of source models on tsunami wave simulations for 2004 (mw 9.2) sumatra earthquake. Nat. Hazards 104(1), 279–304 (2020)

    Article  Google Scholar 

  109. Dhanya, J., Raghukanth, S.: Deterministic tsunami hazard map for india. Curr. Sci. (00113891) 119(10), 1641–1651 (2020)

    Article  Google Scholar 

  110. Jayalakshmi, S., Dhanya, J., Raghukanth, S.T.G., Mai, P.M.: 3D seismic wave amplification in the Indo-Gangetic basin from spectral element simulations. Soil Dyn. Earthq. Eng. 129, 105923 (2020)

    Article  Google Scholar 

  111. Jayalakshmi, S., Dhanya, J., Raghukanth, S.T.G., Mai, P.M.: Hybrid broadband ground motion simulations in the indo-gangetic basin for great himalayan earthquake scenarios. Bull. Earthq. Eng. 19(9), 3319–3348 (2021)

    Article  Google Scholar 

  112. Boore, D.M.: Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bull. Seismol. Soc. Am. 100(4), 1830–1835 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dhanya.

Ethics declarations

Conflict of interest

We state that there is no actual or potential conflict of interest in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanya, J., Raghukanth, S.T.G. Statistical kinematic source models for seismic hazard estimations. Int J Adv Eng Sci Appl Math 15, 37–54 (2023). https://doi.org/10.1007/s12572-023-00328-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-023-00328-5

Keywords

Navigation