Skip to main content
Log in

Abstract

The viscoelastic nature of blood flow through 25% size of stenosis is investigated numerically using Comsol-Multiphysics 5.4. The flow geometry of the stenosed artery is modeled by asymmetric 2D channel with a rigid wall. Blood is characterized as a mixture of Newtonian and viscoelastic fluid. The coupled nonlinear Navier–Stokes equation and the Oldroyd-B models equations are solved numerically in General PDE solver. The governing equations are discretized using the finite element method for the two-dimensional flow to estimate the velocity and pressure distribution. The effect of the velocity field, pressure distribution, and wall shear stress is reported for the Newtonian model and the viscoelastic Oldroyd-B model. The deviation of fluid behavior from the Newtonian fluids is compared to the practical blood behavior. The effects of Weissenberg number (Wi) over velocity field and wall shear stress have tested for moderate Reynolds numbers. The Oldroyd-B model showed quite reliable blood behavior when compared to existing literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Elias Gudino, A.S., Oishi, C.M.: Influence of non-Newtonian blood flow models on drug deposition in the arterial wall. J. Non-Newtonian Fluid Mech. 274, 979–990 (2019)

    MathSciNet  Google Scholar 

  2. Kolachalama, V.B., Tzafriri, A.R., Arifin, D.Y., Edelman, E.R.: Luminal flow patterns dictate arterial drug deposition in stent-based delivery. J. Control. Release 133, 24–30 (2009)

    Article  Google Scholar 

  3. Nadau, L., Sequeira, A.: Numerical simulations of shear dependent viscoelastic flows with a combined finite element-finite volume method. Comput. Math. Appl. 53, 547–568 (2007)

    Article  MathSciNet  Google Scholar 

  4. NandaKumar, N., Sahu, K.C., Anand, M.: Pulsatile flow of a shear thinning fluid through a two-dimensional channel with a stenosis. Eur. J. Mech. B-Fluid 49, 29–35 (2015)

    Article  Google Scholar 

  5. Sankar, D., Hemalatha, K.: Pulsatile flow of Herschel-Bulkley fluid through stenosed arteries—a mathematical model. Int. J. Non-Linear Mech. 41, 979–990 (2006)

    Article  Google Scholar 

  6. Marieb, E.: Human Anatomy and Physiology. 6th edition. Pearson Education, Inc.

  7. Walitza, H.C.E., Anadere, I., Witte, S.: Evalution of viscoelasticity measurements of human blood. Biorheology 25, 209–217 (1988)

    Article  Google Scholar 

  8. Chien, S., Usami, S., Taylor, H., Lundberg, J., Gregersen, M.I.: Effects of hematocritand plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21, 81–87 (1966)

    Article  Google Scholar 

  9. Thurston, G.: Viscoelasticity of human blood. J. Biophys. 12, 1205–1217 (1972)

    Article  Google Scholar 

  10. Yeleswarapu, K.: Evaluation of continuum models for characterizing the constitutive behavior of blood. Ph.D. thesis, University of Pittsburgh, Pittsburgh (1996)

  11. He, T.: A cell-based smoothed CBS finite element formulation for computingthe Oldroyd-B fluid flow. J. Non-Newtonian Fluid Mech. 272, 104–162 (2019)

    Article  Google Scholar 

  12. Osmanlic, F., Korner, C.: Lattice Boltzmann method for Oldroyd-B fluids. Comput. Fluids 124, 190–196 (2016)

    Article  MathSciNet  Google Scholar 

  13. Alves, M.A., Pinho, F.T., Oliveira, P.J.: The flow of viscoelastic fluid past a cylinder: finite-volume high-resolutions method. J. Non-Newtonian Fluid Mech. 97, 207–232 (2001)

    Article  Google Scholar 

  14. Rajagopal, K.R., Bhatnagar, R.K.: Exact solutions for some simple flows of an Oldroyd-B fluid. Acta Mech. 113, 233–239 (1995)

    Article  MathSciNet  Google Scholar 

  15. Hayat, T., Khan, M., Ayub, M.: Exact solutions of flow problems of an Oldroyd-B fluid. Appl. Math. Comput. 151, 105–119 (2004)

    Article  MathSciNet  Google Scholar 

  16. Javadzadegan, A., Fakhimghanbarzadeh, B.: The pulsatile flow of Oldroyd-B fluid in a multi-stenosis artery with a time-dependent wall. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224, 915–923 (2010)

    Article  Google Scholar 

  17. Qi, H., Xu, M.: Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel. Mech. Res. Commun. 34, 210–212 (2007)

    Article  Google Scholar 

  18. Zaman, G., Islam, S., Kang, Y.H., Jung, I.H.: Blood flow of an Oldroyd- B fluid in a blood vessel incorporating a Brownian stress. Sci. China Phys. Mech. Astron. 55, 125–131 (2012)

    Article  Google Scholar 

  19. Bakhti, H., Azrar, L., Baleanu, D.: Pulsatile blood flow in constricted tapered artery using a variable-order fractional Oldroyd-B model. Therm. Sci. 21, 29–40 (2017)

    Article  Google Scholar 

  20. Ikbal, M.: Viscoelastic blood flow through arterial stenosis—effect of variable viscosity. Int. J. Non-Linear Mech. 47, 888–894 (2012)

    Article  Google Scholar 

  21. Pontrelli, G.: Pulsatile blood flow in a pipe. Comput. Fluids 27, 367–380 (1998)

    Article  Google Scholar 

  22. Chakravarty, S., Mandal, P.K.: Physiological flow of shear-thinning viscoelastic fluid past an irregular arterial constriction. Korea Aust. Rheol. J. 25, 163–174 (2013)

    Article  Google Scholar 

  23. Anand, M., Rajagopal, K.: A shear-thinning viscoelastic fluid model for describing the flow of blood. Int. J. Cardiovasc. Med. Sci. 4, 59–68 (2004)

    Google Scholar 

  24. Bodnar, T., Sequeira, A., Prosi, M.: On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Appl. Math. Comput. 217, 5055–5067 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Ikbal, M.A., Chakravarty, S., Mandal, P.K.: Unsteady analysis of viscoelastic blood flow through arterial stenosis. Chem. Eng. Commun. 199, 40–62 (2012)

    Article  Google Scholar 

  26. Anand, M., Kwack, J., Masud, A.: A new generalized Oldroyd-B model for blood flow in complex geometries. Int. J. Eng. Sci. 72, 78–88 (2013)

    Article  Google Scholar 

  27. Elhanafy, A., Guaily, A., Elsaid, A.: Numerical simulation of blood flow in abdominal aortic aneurysms: effects of blood shear-thinning and viscoelastic properties. Math. Comput. Simul. 160, 55–71 (2019)

    Article  MathSciNet  Google Scholar 

  28. Bakhti, H., Azoug, S., Azrar, L.: Blood flow simulation through two- dimensional complex stenosed arteries using viscoelastic oldroyd-B fluid. In: 2018 International Conference on Electronics, Control, Optimization and Computer Science, ICECOCS 2018 pp. 1–4

  29. Craven, T.J., Rees, J.M., Zimmerman, W.B.: Stabilised finite element modelling of Oldroyd-B viscoelastic flows. In: COMSOL Conference 2006 Birmingham.

  30. Friedman, M.H., Hutchins, G.M., Bargeron, C.B., Deters, O.J., Mark, F.F.: Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39, 425–436 (1981)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Science and Engineering Research Board (SERB), of the Department of Science and Technology, for Financial assistance from DST, India, through the grant SR/FST/BVRIT(NSP)/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. S. Praveen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N.N., Praveen, B.V.S. Pulsatile Oldroyd-B blood flow dynamics in a stenosed artery. Int J Adv Eng Sci Appl Math 12, 233–241 (2020). https://doi.org/10.1007/s12572-020-00278-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-020-00278-2

Keywords

Navigation