Skip to main content

Advertisement

Log in

Graphical dynamical systems and their applications to bio-social systems

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this review paper, we discuss graphical dynamical systems (GDSs) and their applications to biological and social systems (bio-social systems). Traditionally, differential equation-based models have been central in modeling bio-social systems. GDSs provide an alternate modeling framework. This framework explicitly represents individual components of the system and captures the interactions among them via a network. The purpose of this review is to enable modelers to obtain an understanding of this basic mathematical and computational framework so that it can be used to study specific bio-social applications. The work covers the range from computational theory to simulation-based analysis. We also provide some directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Concepts such as phase space and fixed points are defined in Sect. 3.

  2. For definitions concerning complexity classes, we refer the reader to [61].

  3. A negative threshold function is the negation of a threshold function. For example, a negative three-threshold function has the value 1 if and only if two or fewer of its inputs have the value 1.

  4. For definitions related to treewidth, we refer the reader to [63].

  5. A Boolean function is monotone if does not change from 1 to 0 when one more of the inputs is changed from 0 to 1. For example, every k-threshold function (for any integer \(k \ge 0\)) is monotone.

References

  1. Epstein, J.M.: Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton University Press, Princeton (2007)

    Google Scholar 

  2. Barrett, C., Bisset, K., Eubank, S., Marathe, M., Kumar, V., Mortveit, H.: Modeling and simulation of large biological, information and socio-technical systems: an interaction based approach. In: Laubenbacher, R. (ed.) Modeling and Simulation of Biological Networks, pp. 101–147. American Mathematical Society (2007)

  3. Barrett, C., Eubank, S., Marathe, M.: Modeling and simulation of large biological, information and socio-technical systems: an interaction based approach. In: Goldin, D., Smolka, S.A., Wegner, P. (eds.) Interactive Computation, pp. 353–392. Springer, Berlin (2006)

    Google Scholar 

  4. Kuhlman, C.J., Kumar, V.A., Marathe, M.V., Mortveit, H.S., Swarup, S., Tuli, G., Ravi, S., Rosenkrantz, D.J.: A general-purpose graph dynamical system modeling framework. In: Simulation Conference (WSC), Proceedings of the 2011 Winter, pp. 296–308. IEEE (2011)

  5. Barrett, C., Beckman, R., Berkbigler, K., Bisset, K., Bush, B., Campbell, K., Eubank, S., Henson, K., Hurford, J., Kubicek, D., Marathe, M., Romero, P., Smith, J., Smith, L., Speckman, P., Stretz, P., Thayer, G., Eeckhout, E., Williams, M.: TRANSIMS: transportation analysis simulation system. Technical Report LA-UR-00-1725, LANL (2001)

  6. Eubank, S.: Scalable, efficient epidemiological simulation. In: Proceedings of Symposium on Applied Computing, pp. 139–145 (2002)

  7. Eubank, S., Guclu, H., Kumar, V.S.A., Marathe, M., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004)

    Google Scholar 

  8. Bisset, K.R., Chen, J., Deodhar, S., Feng, X., Ma, Y., Marathe, M.V.: Indemics: an interactive high-performance computing framework for data intensive epidemic modeling. ACM Trans. Model. Comput. Simul. (TOMACS) 24(1), 4:1–4:32 (2014). (Special Issue on Simulation in Complex Service Systems)

    MathSciNet  MATH  Google Scholar 

  9. Barrett, C.L., Bisset, K.R., Eubank, S.G., Feng, X., Marathe, M.V.: Episimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, pp. 37:1–37:12 (2008)

  10. Parikh, N., Swarup, S., Stretz, P.E., Rivers, C.M., Lewis, B.L., Marathe, M.V., Eubank, S.G., Barrett, C.L., Lum, K., Chungbaek, Y.: Modeling human behavior in the aftermath of a hypothetical improvised nuclear detonation. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 949–956. Saint Paul, MN, USA (2013)

  11. Barrett, C., Bisset, K., Chandan, S., Chen, J., Chungbaek, Y., Eubank, S., Evrenosoğlu, Y., Lewis, B., Lum, K., Marathe, A., Marathe, M., Mortveit, H., Parikh, N., Phadke, A., Reed, J., Rivers, C., Saha, S., Stretz, P., Swarup, S., Thorp, J., Vullikanti, A., Xie, D.: Planning and response in the aftermath of a large crisis: an agent-based informatics framework. In: Pasupathy, R., Kim, S.H., Tolk, A., Hill, R., Kuhl, M.E. (eds.) Proceedings of the 2013 Winter Simulation Conference, pp. 1515–1526 (2013)

  12. Bisset, K., Alam, M., Bassaganya-Riera, J., Carbo, A., Eubank, S., Hontecillas, R., Hoops, S., Mei, Y., Wendelsdorf, K., Xie, D., Yeom, J., Marathe, M.: High-performance interaction-based simulation of gut immunopathologies with enteric immunity simulator (ENISI). In: Proceedings of International Parallel and Distributed Processing Symposium (IPDPS), pp. 48–59 (2012)

  13. Alam, M., Deng, X., Philipson, C., Bassaganya-Riera, J., Bisset, K., Carbo, A., Eubank, S., Hontecillas, R., Hoops, S., Mei, Y., Abedi, V., Marathe, M.: Sensitivity analysis of an ENteric Immunity SImulator (ENISI)-based model of immune responses to Helicobacter pylori infection. PLoS ONE 10(9), e0136139 (2015)

    Google Scholar 

  14. Barrett, C., Eubank, S., Kumar, V.S.A., Marathe, M.: Understanding large-scale social and infrastructure networks: a simulation-based approach. SIAM News 37(4), 1–5 (2004)

    Google Scholar 

  15. Yeom, J.S., Bhatele, A., Bisset, K.R., Bohm, E., Gupta, A., Kale, L.V., Marathe, M., Nikolopoulos, D.S., Schulz, M., Wesolowski, L.: Overcoming the scalability challenges of epidemic simulations on Blue Waters. In: Proceedings of the IEEE 28th International Parallel and Distributed Processing Symposium, pp. 755–764 (2014)

  16. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966). (Edited and completed by Arthur W. Burks)

    Google Scholar 

  17. Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334, 3–33 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific Publishing Company, Cambridge (2001)

    MATH  Google Scholar 

  19. Delorme, M., Mazoyer, J. (eds.): Cellular Automata—A Parallel Model, Mathematics and Its Applications, vol. 460. Kluwer Academic Publishers, Alphen aan den Rijn (1999)

    Google Scholar 

  20. Wolfram, S.: Theory and Applications of Cellular Automata, Advanced Series on Complex Systems, vol. 1. World Scientific Publishing Company, Singapore (1986)

    Google Scholar 

  21. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    MathSciNet  Google Scholar 

  22. Ribeiro, A.S., Kauffman, S.A.: Noisy attractors and ergodic sets in models of gene regulatory networks. J. Theor. Biol. 247(4), 743–755 (2007)

    MathSciNet  Google Scholar 

  23. Goles, E., Martinez, S.: Neural and Automata Networks: Dynamical Behaviour and Applications. Kluwer Academic Publishers, Alphen aan den Rijn (1990)

    MATH  Google Scholar 

  24. Goles-Chacc, E., Fogelman-Soulie, F., Pellegrin, D.: Decreasing energy functions as a tool for studying threshold networks. Discrete Appl. Math. 12, 261–277 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Goles, E., Olivos, J.: Periodic behavior in generalized threshold functions. Discrete Math. 30, 187–189 (1980)

    MathSciNet  MATH  Google Scholar 

  26. Ruz, G.A., Goles, E.: Reconstruction and update robustness of the mammalian cell cycle network. In: Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 397–403 (2012)

  27. Gershenson, C.: Introduction to random Boolean networks (2004). arXiv:nlin.AO/040806v3-12Aug2004. Accessed Aug 2005

  28. Shmulevich, I., Dougherty, E.R., Zhang, W.: From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc. IEEE 90(11), 1778–1792 (2002)

    Google Scholar 

  29. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)

    Google Scholar 

  30. Shmulevich, I., Kauffman, S.A.: Activities and sensitivities in Boolean network models. Phys. Rev. Lett. 93(4), 048701:1–048701:4 (2004)

    Google Scholar 

  31. Jarrah, A.S., Laubenbacher, R.: On the Algebraic Geometry of Polynomial Dynamical Systems, The IMA Volumes in Mathematics and Its Applications, vol. 149, pp. 109–123. Springer, New York (2009)

    MATH  Google Scholar 

  32. Jarrah, A.S., Raposa, B., Laubenbacher, R.: Nested canalyzing, unate cascade, and polynomial functions. Physica D 233, 167–174 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Kaneko, K.: Pattern dynamics in spatiotemporal chaos. Physica D 34, 1–41 (1989)

    MathSciNet  MATH  Google Scholar 

  34. Golubitsky, M., Pivato, M., Stewart, I.: Interior symmetry and local bifurcations in coupled cell networks. Dyn. Syst. 19(4), 389–407 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Nishikawa, T., Sun, J., Motter, A.E.: Sensitive dependence of optimal network dynamics on network structure. Phys. Rev. X 7, 041044:1–041044:21 (2017)

    Google Scholar 

  36. Davidich, M., Bornholdt, S.: The transition from differential equations to Boolean networks: a case study in simplifying a regulatory network model. J. Theor. Biol. 255(3), 269–277 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Veliz-Cuba, A., Stigler, B.: Boolean models can explain bistability in the lac Operon. J. Comput. Biol. 18, 783–794 (2011)

    MathSciNet  Google Scholar 

  38. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Complexity of reachability problems for finite discrete dynamical systems. J. Comput. Syst. Sci. 72(8), 1317–1345 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Rosenkrantz, D.J., Marathe, M.V., Ravi, S.S., Stearns, R.E.: Testing phase space properties of synchronous dynamical systems with nested canalyzing local functions. In: Proceedings of 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Stockholm, Sweden, pp. 1585–1594 (2018)

  40. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Reachability problems for sequential dynamical systems with threshold functions. Theor. Comput. Sci. 295(1–3), 41–64 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Mortveit, H.S., Reidys, C.M.: An Introduction to Sequential Dynamical Systems. Springer, Berlin (2007)

    MATH  Google Scholar 

  42. Abdelhamid, S.H.E., Kuhlman, C.J., Marathe, M.V., Mortveit, H.S., Ravi, S.S.: GDSCalc: a web-based application for discrete graph dynamical systems. PLoS ONE 10(8), 24 (2015)

    Google Scholar 

  43. El Samad, H., Khammash, M., Petzold, L., Gillespie, D.: Stochastic modeling of gene regulatory networks. Int. J. Robust Nonlinear Control 15, 691–711 (2005)

    MATH  Google Scholar 

  44. Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structure of social contact networks and their impact on epidemics. In: Abello, J.M., Cormode, G. (eds.) Discrete Methods in Epidemiology, vol. 70, pp. 179–200. American Mathematical Society, Providence, RI (2006)

  45. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Google Scholar 

  46. Kuhlman, C.J., Kumar, V.S.A., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.: Inhibiting diffusion of complex contagions in social networks: theoretical and experimental results. Data Min. Knowl. Discov. 29(2), 423–465 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Kuhlman, C.J., Kumar, V.S.A., Marathe, M.V., Swarup, S., Tuli, G., Ravi, S.S., Rosenkrantz, D.J.: Inhibiting the diffusion of contagions in bi-threshold systems: Analytical and experimental results. In: Complex Adaptive Systems: Energy, Information, and Intelligence, Papers from the 2011 AAAI Fall Symposium, Arlington, Virginia, pp. 91–100 (2011)

  48. Kuhlman, C.J.: High performance computational social science modeling of networked populations. Ph.D. thesis, Computer Science Department, Virginia Tech, Blacksburg, VA, USA (2013)

  49. Kuhlman, C.J., Kumar, V.S.A., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Swarup, S., Tuli, G.: A bi-threshold model of complex contagion and its application to the spread of smoking behavior. In: Proceedings of SNA-KDD Workshop, pp. 18.1–18.10 (2011)

  50. Kuhlman, C.J., Marathe, M.V., Kumar, V.S.A., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Analysis problems for special classes of bi-threshold dynamical systems. In: Proceedings of Workshop on Multiagent Interaction Networks (MAIN 2013), held in conjunction with AAMAS, pp. 26–33 (2013)

  51. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E., Thakur, M.: Computational aspects of analyzing social network dynamics. In: IJCAI 2007, Proceedings of 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 Jan 2007, pp. 2268–2273 (2007)

  52. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Modeling and analyzing social network dynamics using stochastic discrete graphical dynamical systems. Theor. Comput. Sci. 412(30), 3932–3946 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Rosenkrantz, D.J., Marathe, M.V., Hunt III, H.B., Ravi, S.S., Stearns, R.E.: Analysis problems for graphical dynamical systems: a unified approach through graph predicates. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, 4–8 May 2015, pp. 1501–1509 (2015)

  54. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E., Thakur, M.: Predecessor existence problems for finite discrete dynamical systems. Theor. Comput. Sci. 386(1–2), 3–37 (2007)

    MathSciNet  MATH  Google Scholar 

  55. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Predecessor and permutation existence problems for sequential dynamical systems. In: DMCS, pp. 69–80 (2003)

  56. Easley, D., Kleinberg, J.: Networks, Crowds and Markets: Reasoning About a Highly Connected World. Cambridge University Press, New York, NY (2010)

    MATH  Google Scholar 

  57. Dodds, P., Watts, D.: A generalized model of social and biological contagion. J. Theor. Biol. 232(4), 587–604 (2005)

    MathSciNet  Google Scholar 

  58. Centola, D., Macy, M.: Complex contagions and the weakness of long ties. Am. J. Sociol. 113(3), 702–734 (2007)

    Google Scholar 

  59. Kleinberg, J.: Cascading behavior in networks: algorithmic and economic issues. In: Nissan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, pp. 613–632. Cambridge University Press, New York, NY (2007)

    Google Scholar 

  60. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Analysis problems for sequential dynamical systems and communicating state machines. In: Proceedings of MFCS, pp. 159–172 (2001)

  61. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman and Co., San Francisco, CA (1979)

    MATH  Google Scholar 

  62. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: On special classes of sequential dynamical systems. Ann. Comb. 7, 381–408 (2003)

    MathSciNet  MATH  Google Scholar 

  63. Bodlaender, H.: Treewidth: algorithmic techniques and results. In: Proceedings of 22nd Symposium on Mathematical Foundations of Computer Science, pp. 29–36 (1997)

  64. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E., Tosic, P.T.: Gardens of Eden and fixed points in sequential dynamical systems. In: Proceedings of International Conference on Discrete Models Combinatorics, Computation and Geometry (DM-CCG), pp. 95–110 (2001)

  65. Kosub, S., Homan, C.M.: Dichotomy results for fixed point counting in Boolean dynamical systems. In: Proceedings of ICTCS, pp. 163–174 (2007)

  66. Tosic, P.T.: On the complexity of enumerating possible dynamics of sparsely connected Boolean network automata with simple update rules. In: Automata 2010—16th International Workshop on CA and DCS, pp. 125–144 (2010)

  67. Akutsu, T., Kosub, S., Melkman, A., Tamura, T.: Finding a periodic attractor of a Boolean network. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(5), 1410–1421 (2012)

    Google Scholar 

  68. Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York, NY (1993)

    Google Scholar 

  69. Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random Boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci. (PNAS) 100(25), 14796–14799 (2003)

    Google Scholar 

  70. Bornholdt, S.: Boolean network models of cellular regulation: prospects and limitations. J. R. Soc. Interface 5(Suppl 1), S85–S94 (2008)

    Google Scholar 

  71. Wang, R.S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol. 9(5), 055001 (2012)

    Google Scholar 

  72. Laschov, D., Margaliot, M., Even, G.: Observability of Boolean networks: a graph-theoretic approach. Automatica 49(8), 2351–2362 (2013)

    MathSciNet  MATH  Google Scholar 

  73. Nguyen, C., Schlesinger, K.J., Carlson, J.M.: Data-driven models for individual and group decision making. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 852–859 (2017)

  74. Macal, C., North, M.: Introductory tutorial: agent-based modeling and simulation. In: Proceedings of the 2014 Winter Simulation Conference, pp. 6–20 (2014)

  75. Weimer, C.W., Miller, J.O., Hill, R.R.: Agent-based modeling: an introduction and primer. In: Proceedings of the 2016 Winter Simulation Conference, pp. 65–79 (2016)

  76. An, G., Mi, Q., Dutta-Moscato, J., Vodovotz, Y.: Agent-based models in translational systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 159–171 (2009)

    Google Scholar 

  77. Nikolai, C., Madey, G.: Tools of the trade: a survey of various agent based modeling platforms. J. Artif. Soc. Soc. Simul. 12, 1–37 (2009)

    Google Scholar 

  78. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

  79. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199–208 (2009)

  80. Nguyen, N.P., Yan, G., Thai, M.T., Eidenbenz, S.: Containment of misinformation spread in online social networks. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 213–222 (2012)

  81. Kuhlman, C.J., Tuli, G., Swarup, S., Marathe, M.V., Ravi, S.S.: Blocking simple and complex contagion by edge removal. In: 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 Dec 2013, pp. 399–408 (2013)

  82. Demongeot, J., Goles, E., Morvan, M., Noual, M., Sene, S.: Attraction basins as gauges of robustness against boundary conditions in biological complex systems. PLoS ONE 5, e11793-1–e11793-18 (2010)

    Google Scholar 

  83. Wendelsdorf, K., Alam, M., Bassaganya-Riera, J., Bisset, K., Eubank, S., Hontecillas, R., Hoops, S., Marathe, M.: Enteric immunity simulator: a tool for in silico study of gastroenteric infections. IEEE Trans. NanoBiosci. 11(3), 273–288 (2012)

    Google Scholar 

  84. Wendelsdorf, K., Bassaganya-Riera, J., Bisset, K., Eubank, S., Hontecillas, R., Marathe, M.: Enteric immunity simulator: a tool for in silico study of gut immunopathologies. In: Proceedings of the IEEE International Conference Bioinformatics and Biomedicine, pp. 462–469 (2011)

  85. Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969)

    Google Scholar 

  86. Thomas, R.: Boolean formalisation of genetic control circuits. J. Theor. Biol. 42(3), 563–585 (1973)

    Google Scholar 

  87. Goles, E., Salinas, L.: Comparison between parallel and serial dynamics of Boolean networks. Theor. Comput. Sci. 396, 247–253 (2008)

    MathSciNet  MATH  Google Scholar 

  88. Serra, R., Villani, M., Barbieri, A., Kauffman, S., Colacci, A.: On the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell types. J. Theor. Biol. 265, 185–193 (2010)

    MathSciNet  MATH  Google Scholar 

  89. Luo, J.X., Turner, M.S.: Evolving sensitivity balances Boolean networks. PLoS ONE 7, e36010-1–e36010-8 (2012)

    Google Scholar 

  90. Macauley, M., Mortveit, H.S.: On enumeration of conjugacy classes of Coxeter elements. Proc. Am. Math. Soc. 136(12), 4157–4165 (2008)

    MathSciNet  MATH  Google Scholar 

  91. Macauley, M., Mortveit, H.: Cycle equivalence of graph dynamical systems. Nonlinearity 22(2), 421–436 (2009)

    MathSciNet  MATH  Google Scholar 

  92. Welsh, D.: The Tutte polynomial. Random Struct. Algorithms 15, 210–228 (1999)

    MathSciNet  MATH  Google Scholar 

  93. Gordon, S., Taylor, P.R.: Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5(12), 953–64 (2005)

    Google Scholar 

  94. Iwasaki, A.: Mucosal dendritic cells. Ann. Rev. Immunol. 25, 381–418 (2007)

    Google Scholar 

  95. Grilo, A., Caetano, A., Rosa, A.: Agent based artificial immune system. In: Proceedings of GECCO-01, vol. LBP pp. 145–151 (2001)

  96. Tay, J.C., Jhavar, A.: CAFISS: A complex adaptive framework for immune system simulation. In: Proceedings of the 2005 ACM Symposium on Applied Computing, SAC ’05, pp. 158–164. ACM, New York, NY (2005)

  97. Celada, F., Seiden, P.E.: A computer model of cellular interactions in the immune system. Immunol. Today 13(2), 56–62 (1992)

    Google Scholar 

  98. Castiglione, F., Duca, K., Jarrah, A., Laubenbacher, R., Hochberg, D., Thorley-Lawson, D.: Simulating Epstein-Barr virus infection with C-ImmSim. Bioinformatics 23, 1371–1377 (2007)

    Google Scholar 

  99. Bernaschi, M., Castiglione, F.: Design and implementation of an immune system simulator. Comput. Biol. Med. 31(5), 303–31 (2001)

    Google Scholar 

  100. Emerson, A., Rossi, E.: Immunogrid—the virtual human immune system project. Stud. Health Technol. Inform. 126, 87–92 (2007)

    Google Scholar 

  101. Efroni, S., Harel, D., Cohen, I.: Reactive animation: realistic modeling of complex dynamic systems. IEEE Comput. 38(1), 38–47 (2005)

    Google Scholar 

  102. Swerdlin, N., Cohen, I.R., Harel, D.: The lymph node B cell immune response: dynamic analysis in-silico. Proc. IEEE 96(8), 1421–1443 (2008)

    Google Scholar 

  103. Mata, J., Cohn, M.: Cellular automata-based modeling program: synthetic immune system. Immunol. Rev. 216(1), 198–212 (2007)

    Google Scholar 

  104. Meier-Schellersheim, M., Mack, G.: SIMMUNE, a tool for simulating and analyzing immune system behavior. CoRR cs.MA/9903017 (1999)

  105. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat. Methods 8(2), 177–83 (2011)

    Google Scholar 

  106. Folcik, V.A., An, G.C., Orosz, C.G.: The basic immune simulator: an agent-based model to study the interactions between innate and adaptive immunity. Theor. Biol. Med. Model. 4, 39 (2007)

    Google Scholar 

  107. Sutterlin, T., Huber, S., Dickhaus, H., Grabe, N.: Modeling multi-cellular behavior in epidermal tissue homeostasis via finite state machines in multi-agent systems. Bioinformatics 25(16), 2057–2063 (2009)

    Google Scholar 

  108. Bauer, A.L., Beauchemin, C.A.A., Perelson, A.S.: Agent-based modeling of host-pathogen systems: the successes and challenges. Inf. Sci. 179(10), 1379–1389 (2009)

    Google Scholar 

  109. Fachada, N., Lopes, V.V., Rosa, A.: Agent based modelling and simulation of the immune system: a review. Technical report, Systems and Robotics Institute, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal (2000)

  110. Pappalardo, F., Zhang, P., Halling-Brown, M., Basford, K., Scalia, A., Shepherd, A.J., Moss, D., Motta, S., Brusic, V.: Computational simulations of the immune system for personalized medicine: state of the art and challenges. Curr. Pharmacogenom. Personal. Med. 6(4), 260–271 (2008)

    Google Scholar 

  111. Ferguson, N., Cummings, D., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.: Strategies for containing an emerging Influenza pandemic in Southeast Asia. Nature 437, 209–214 (2005)

    Google Scholar 

  112. Barrett, C., Bissett, K., Chen, J., Feng, X., Kumar, V.S.A., Marathe, M.: Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: International Conference on Supercomputing (ICS), pp. 430–439 (2009)

  113. Kumar, S., Piper, K., Galloway, D.D., Hadler, J.L., Grefenstette, J.J.: Is population structure sufficient to generate area-level inequalities in influenza rates? An examination using agent-based models. BMC Public Health 15, 947 (2015)

    Google Scholar 

  114. Fox, S.J., Miller, J.C., Meyers, L.A.: Seasonality in risk of pandemic influenza emergence. PLoS Comput. Biol. 13(10), e1005749-1–e1005749-23 (2017)

    Google Scholar 

  115. Marathe, M., Vullikanti, A.: Computational epidemiology. Commun. ACM 56(7), 88–96 (2013)

    Google Scholar 

  116. Bhatele, A., Yeom, J.S., Jain, N., Kuhlman, C.J., Livnat, Y., Bisset, K.R., Kale, L.V., Marathe, M.V.: Massively parallel simulations of spread of infectious diseases over realistic social networks. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 689–694 (2017)

  117. Abdelhamid, S., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Reid, K.: Agent-based modeling and simulation of depression and its impact on students’ success and academic retention. In: American Society for Engineering Education (ASEE) (2016)

  118. Lum, K., Swarup, S., Eubank, S., Hawdon, J.: The contagious nature of imprisonment: an agent-based model to explain racial disparities in incarceration rates. J. R. Soc. Interface 11(98), 12 (2014)

    Google Scholar 

  119. Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971)

    MATH  Google Scholar 

  120. Ameden, H.A., Boxall, P.C., Cash, S.B., Vickers, D.A.: An agent-based model of border enforcement for invasive species management. Can. J. Agric. Econ. 57, 481–496 (2009)

    Google Scholar 

  121. Tonnang, H.E., Herve, B.D., Biber-Freudenberger, L., Salifu, D., Subramanian, S., Ngowi, V.B., Guimapi, R.Y., et al.: Advances in crop insect modelling method—towards a whole system approach. Ecol. Model. 354, 88–103 (2017)

    Google Scholar 

  122. Merkey, B.V., Lardon, L.A., Seoane, J.M., Kreft, J.U., Smets, B.F.: Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual-based modelling study. Environ. Microbiol. 13, 2435–2452 (2011)

    Google Scholar 

  123. Spies, T.A., White, E., Ager, A., Kline, J.D., Bolte, J.P., Platt, E.K., Olsen, K.A., et al.: Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecol. Soc. 22, 20 (2017)

    Google Scholar 

  124. Thorne, B.C., Bailey, A.M., Peirce, S.M.: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief. Bioinform. 8(4), 245–257 (2007)

    Google Scholar 

  125. Channakeshava, K., Bisset, K., Kumar, V.A., Marathe, M., Yardi, S.: High performance scalable and expressive modeling environment to study mobile malware in large dynamic networks. In: 25th IEEE International Parallel & Distributed Processing Symposium (IPDPS), pp. 770–781 (2011)

  126. Bookstaber, R.: Using agent-based models for analyzing threats to financial stability. Technical Report Working Paper No. 0003, U.S. Dept. of Treasury (2012)

  127. Paul, M., Dredze, M.: A model for mining public health topics from Twitter. Health 11, 16–6 (2012)

    Google Scholar 

  128. Zhang, B., Chan, W.K.V., Ukkusuri, S.V.: Agent-based modeling for household level hurricane evacuation. In: Proceedings of the 2009 Winter Simulation Conference, pp. 2778–2784 (2009)

  129. Grimm, V.: Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115, 129–148 (1999)

    Google Scholar 

  130. Zhu, Y., Xie, K., Ozbay, K., Yang, H.: Hurricane evacuation modeling using behavior models and scenario-driven agent-based simulations. Procedia Comput. Sci. 130, 836–843 (2018)

    Google Scholar 

  131. Shmulevich, I., Lähdesmäki, H., Dougherty, E.R., Astola, J., Zhang, W.: The role of certain post classes in Boolean network models of genetic networks. Proc. Natl. Acad. Sci. 100(19), 10734–10739 (2003)

    Google Scholar 

  132. Heckbert, S., Baynes, T., Reeson, A.: Agent-based modeling in ecological economics. Ann. N. Y. Acad. Sci. 1185, 39–53 (2010)

    Google Scholar 

  133. Squazzoni, F.: The impact of agent-based models in the social sciences after 15 years of incursions. Hist. Econ. Ideas 18, 197–233 (2010)

    Google Scholar 

  134. Bruch, E., Atwell, J.: Agent-based models in empirical social research. Sociol. Methods Res. 44, 186–221 (2013)

    MathSciNet  Google Scholar 

  135. Bianchi, F., Squazzoni, F.: Agent-based models in sociology. WIREs Comput. Stat. 7, 284–306 (2015)

    MathSciNet  Google Scholar 

  136. Axelrod, R.: The dissemination of culture. J. Confl. Resolut. 41, 203–226 (1997)

    Google Scholar 

  137. Epstein, J.M.: Modeling civil violence: an agent-based computational approach. Proc. Natl. Acad. Sci. (PNAS) 99, 7243–7250 (2002)

    Google Scholar 

  138. Hethcote, H.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    MathSciNet  MATH  Google Scholar 

  139. Newman, M.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    MathSciNet  MATH  Google Scholar 

  140. Longini, I.M., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D.A., Halloran, E.M.: Containing pandemic influenza at the source. Science 309(5737), 1083–1087 (2005)

    Google Scholar 

  141. Sander, B., Nizam, A., Garrison, L.P., Postma, M.J., Halloran, M.E., Ira, M., Longini, J.: Economic evaluation of influenza pandemic mitigation strategies in the United States using a stochastic microsimulation transmission model. Value Health 12, 226–233 (2009)

    Google Scholar 

  142. Yang, Y., Sugimoto, J., Halloran, M., Basta, N., Chao, D., Matrajt, L., Potter, G., Kenah, E., Longini, I.M.: The transmissibility and control of pandemic influenza a (H1N1) virus. Science 326(5953), 729–733 (2009)

    Google Scholar 

  143. Halloran, M., Ferguson, N., Eubank, S., Longini, I., Cummings, D., Lewis, B., Xu, S., Fraser, C., Vullikanti, A., Germann, T., Wagener, D., Beckman, R., Kadau, K., Barrett, C., Macken, C., Burke, D., Cooley, P.: Modeling targeted layered containment of an influenza pandemic in the United States. Proc. Natl. Acad. Sci. (PNAS) 105(12), 4639–4644 (2008)

    Google Scholar 

  144. Pandey, A., Atkins, K.E., Medlock, J., Wenzel, N., Townsend, J.P., Childs, J.E., Nyenswah, T.G., Ndeffo-Mbah, M.L., Galvani, A.P.: Strategies for containing Ebola in West Africa. Science 346(6212), 991–995 (2014)

    Google Scholar 

  145. Rivers, C., Lofgren, E., Marathe, M., Eubank, S., Lewis, B.: Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia. PLoS Curr. (2014). https://doi.org/10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c

  146. Venkatramanan, S., Chen, J., Gupta, S., Lewis, B.L., Marathe, M., Mortveit, H.S., Vullikanti, A.: Spatio-temporal optimization of seasonal vaccination using a metapopulation model of Influenza. In: 2017 IEEE International Conference on Healthcare Informatics, ICHI, pp. 134–143 (2017)

  147. Ji, Z., Yan, K., Li, W., Hu, H., Zhu, X.: Mathematical and computational modeling in complex biological systems. Hindawi BioMed Res. Int. 2017, 1–16 (2017)

    Google Scholar 

  148. Walpole, J., Papin, J.A., Peirce, S.M.: Mathematical and computational modeling in complex biological systems. Ann. Rev. Biomed. Eng. 15, 137–154 (2013)

    Google Scholar 

  149. Bauch, C., Earn, D.: Vaccination and the theory of games. Proc. Natl. Acad. Sci. (PNAS) 101(36), 13391–13394 (2004)

    MathSciNet  MATH  Google Scholar 

  150. Aspnes, J., Rustagi, N., Saia, J.: Worm versus alert: who wins in a battle for control of a large-scale network? In: Proceedings of Principles of Distributed Systems, 11th International Conference, OPODIS 2007, pp. 443–456 (2007)

  151. Narahari, Y.: Game Theory and Mechanism Design, IISc Lecture Notes, vol. 4. World Scientific, Singapore (2014)

    Google Scholar 

  152. Papadimitriou, C.H.: Computational Complexity. Pearson Publishing, Reading, MA (1993)

    MATH  Google Scholar 

  153. Adiga, A., Chu, S., Eubank, S., Kuhlman, C.J., Lewis, B., Marathe, A., Marathe, M., Nordberg, E.K., Swarup, S., Vullikanti, A., Wilson, M.L.: Disparities in spread and control of Influenza in slums of Delhi: findings from an agent-based modelling study. BMJ Open 8(1), 12 (2018)

    Google Scholar 

  154. Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD ’01: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66 (2001)

  155. Domingos, P., Richardson, M.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the 8th International Conference on Knowledge Discovery and Data Mining, pp. 61–70 (2002)

  156. Kitsak, M., Gallos, L., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H., Makse, H.: Identifying influential spreaders in complex networks. Nat. Phys. 6, 888–893 (2010)

    Google Scholar 

  157. Halloran, H., Longini Jr., I., Nizam, A., Yang, Y.: Possible containment of bio-terrorist smallpox. Science 298, 1428–1432 (2002)

    Google Scholar 

  158. Barrett, C., Chen, J., Eubank, S., Kumar, V., Lewis, B., Marathe, A., Marathe, M.: Role of vulnerable and critical nodes in controlling epidemics in social networks. In: Proceedings of Epidemics (2008)

  159. Barrett, C., Bisset, K., Leidig, J., Marathe, A., Marathe, M.: Economic and social impact of influenza mitigation strategies by demographic class. Epidemics 3(1), 19–31 (2011)

    Google Scholar 

  160. Adiga, A., Kuhlman, C., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Inferring local transition functions of discrete dynamical systems from observations of system behavior. Theor. Comput. Sci. 679, 126–144 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank members of the Network Dynamics and Simulation Science Laboratory (NDSSL) for their comments and input. Specifically, we thank Chris Barrett, Christian Reidys, Daniel Rosenkrantz and Richard Stearns for their collaboration on several papers discussed in this article. We thank the computer systems administrators and managers at the Biocomplexity Institute of Virginia Tech for their help in this and many other works: Dominik Borkowski, William Miles Gentry, Jeremy Johnson, William Marmagas, Douglas McMaster, Kevin Shinpaugh and Robert Wills. This work has been partially supported by DTRA CNIMS (Contract HDTRA1-11-D-0016-0001), NSF BIG DATA Grant IIS-1633028, NSF DIBBS Grant ACI-1443054 and NSF EAGER Grant CMMI-1745207. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

Disclaimer

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhav V. Marathe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adiga, A., Kuhlman, C.J., Marathe, M.V. et al. Graphical dynamical systems and their applications to bio-social systems. Int J Adv Eng Sci Appl Math 11, 153–171 (2019). https://doi.org/10.1007/s12572-018-0237-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-018-0237-6

Keywords

Navigation