Skip to main content
Log in

A spectral Galerkin method for the fractional order diffusion and wave equation

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

We are going to present a suitable bases to treat the space- and timefractional diffusion equation with the Galerkin method to obtain spectral convergence in both, time and space. Furthermore, by carefully choosing a Fourier ansatz in space, we can guarantee the resulting matrices to be sparse, even though fractional order differential equations are global operator. This is due to the fact that the chosen basis consists of eigenfunctions of the given fractional differential operator. Numerical experiments validate the theoretically predicted spectral convergence for smooth problems. Additionally, we show that this method is also capable of computing approximation of the solution of the wave equation by letting the order of the spatial and temporal derivative approach two arbitrarily close.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Stanley, H.E.: Levy flight search patterns of wandering albatrosses. Nature 381(6581), 413–415 (1996)

    Article  Google Scholar 

  2. Sagi, Y., Brook, M., Almog, I., Davidson, N.: Observation of anomalous diffusion and fractional self-similarity in one dimension. Phys. Rev. Lett. 108(093002), 2012 (2012)

    Google Scholar 

  3. Albano, E.V., Martin, H.O.: Temperature-programmed reactions with anomalous diffusion. J. Phys. Chem. 92(12), 3594–3597 (1988)

    Article  Google Scholar 

  4. Raberto, M., Cuniberti, G., Riani, M., Scales, E., Mainardi, F., Servizi, G.: Learning short-option valuation in the presence of rare events. Int. J. Theor. Appl. Finance 03(03), 563–564 (2000)

    Article  Google Scholar 

  5. Schumacher, E., Hanert, E., Deleersnijder, E.: Front dynamics in fractional-order epidemic models. J. Theor. Biol. 279, 9–16 (2010)

    MathSciNet  Google Scholar 

  6. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1968)

    Google Scholar 

  7. Scales, E., Gorenflo, R., Mainardi, F., Raberto, M.: Revisiting the derivation of the fractional diffusion equation. Fractals 11(supp01), 281–289 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Phys. A Stat. Mech. Appl. 287, 468–481 (2000)

    Article  MATH  Google Scholar 

  9. Gorenflo, R., Mainardi, F.: Continuous time random walk, Mittag–Leffler waiting time and fractional diffusion: mathematical aspects. ArXiv e-prints (2007)

  10. Elschner, J., Gohberg, I., Silbermann, B.: Problems and Methods in Mathematical Physics: The Siegfried Prössdorf Memorial Volume: Proceedings of the 11th TMP, Chemnitz (Germany), March 25–28, 1999. Operator theory. Springer, Berlin (2001)

  11. Lukacs, E.: Characteristic Functions. Griffin’s Statistical Monographs and Courses. Hafner Pub. Co., New York (1960)

    Google Scholar 

  12. Luchko, Y.: Fractional wave equation and damped waves. J. Math. Phys. 54(3), 031505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. El-Sayed, AhmedMA: Fractional-order diffusion-wave equation. Int. J. Theor. Phys. 35(2), 311–322 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23–28 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Metzler, R., Nonnenmacher, T.F.: Space-and time-fractional diffusion and wave equations, fractional fokker–planck equations, and physical motivation. Chem. Phys. 284(1), 67–90 (2002)

    Article  Google Scholar 

  16. Zhang, H.-M., Liu, F.-W.: The fundamental solutions of the space, space-time riesz fractional partial differential equations with periodic conditions. Numer. Math. A J. Chin. Univ. Engl. Ser. 16(2), 181–192 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Camminady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camminady, T., Frank, M. A spectral Galerkin method for the fractional order diffusion and wave equation. Int J Adv Eng Sci Appl Math 10, 90–104 (2018). https://doi.org/10.1007/s12572-018-0208-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-018-0208-y

Keywords

Navigation