Skip to main content
Log in

Abstract

Blood, composed of red blood cells (RBCs), white blood cells, platelets and plasma, is a non-linear fluid exhibiting complex behavior, such as plasma-skimming and the Fahraeus effect, which are observed especially in microscale applications. In this paper, we use Mixture Theory to model blood as a two-fluid (two-component) system. Plasma is treated as a viscous fluid and the RBCs are modeled as a nonlinear fluid with a shear dependent viscosity, with the effect of the hematocrit included. The drag force and the shear lift force between the RBCs and plasma are also accounted for. We present an overview of our recent studies which show very good agreement between our numerical results and available experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. A complete constitutive relation for the stress tensor of the (whole) blood should not only describe the rheological characteristics of its different components, but also the biochemistry and the chemical reactions occurring in blood. To date no such comprehensive and universal constitutive relation exists. As mentioned by Anand et al. [53], “the numerous biochemical reactions that take place leading to the formation and lysis of clots, and the exact influence of hemodynamic factors in these reactions are incompletely understood.” Anand and Rajagopal [36] developed a model for blood that is capable of incorporating platelet activation. More recently, (Anand et al. [30, 54, 55]) have provided a framework whereby some of the biochemical aspects of blood, along with certain rheological (viscoelastic) properties of blood, are included in the formulation.

  2. The function, where \( 0 \le \phi < \phi_{ \hbox{max} } < 1 \), is a continuous function of position and time; in reality, \( \phi \) is either one or zero at any position and time, depending upon whether one is pointing to a particle or to the void space at that position. That is, the real volume distribution has been averaged, in some sense, over the neighborhood of any given position. It should be mentioned that in practice \( \phi \) is never equal to one; its maximum value, generally designated as the maximum packing fraction, depends on the shape, size, method of packing, etc.

  3. Finally, for a complete study of a thermo-mechanical problem, not only in the Mixture Theory, but in continuum mechanics in general, the Second Law of Thermodynamics (the Clausius–Duhem inequality) has to be considered (see Liu [56], Batra [57]). However, since in Mixture theory there is no general agreement on the form of the second law and since the Helmholtz free energy is not known, a complete thermodynamical treatment of the model used in our studies is lacking. In recent years, Rajagopal et al. (see for example, Rajagopal and Srinivasa [58, 59]) have devised a thermodynamic framework, called the Multiple Natural Configuration Theory where by maximizing the rate of entropy production they obtain a class of constitutive relations for many different types of materials.

References

  1. Fung, Y.C., Cowin, S.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., (1993)

  2. Cemal Eringen, A.: A continuum theory of dense suspensions. Zeitschrift für Angew. Math. und Phys. 56, 529–547 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eringen, A.C.: Continuum theory of dense rigid suspensions. Rheol. Acta 30, 23–32 (1991)

    Article  MATH  Google Scholar 

  4. Ariman, T., Turk, M.A., Sylvester, N.D.: Microcontinuum fluid mechanics—a review. Int. J. Eng. Sci. 11, 905–930 (1973)

    Article  MATH  Google Scholar 

  5. Massoudi, M., Kim, J., Antaki, J.F.: Modeling and numerical simulation of blood flow using the theory of interacting continua. Int. J. Non Linear Mech. 47, 1–15 (2011)

    Google Scholar 

  6. Wu, W.-T., Aubry, N., Massoudi, M.: On the coefficients of the interaction forces in a two-phase flow of a fluid infused with particles. Int. J. Non Linear Mech. 59, 76–82 (2014)

    Article  Google Scholar 

  7. Wu, W.-T., Aubry, N., Massoudi, M., Kim, J., Antaki, J.F.: A numerical study of blood flow using mixture theory. Int. J. Eng. Sci. 76, 56–72 (2014)

    Article  MathSciNet  Google Scholar 

  8. Kang, C.K., Eringen, A.C.: The effect of microstructure on the rheological properties of blood. Bull. Math. Biol. 38, 135–159 (1976)

    Article  MATH  Google Scholar 

  9. Segré, G., Silberberg, A.: Behaviour of macroscopic rigid spheres in Poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech. 14, 115 (1962)

    Article  MATH  Google Scholar 

  10. Segré, G., Silberberg, A.: Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. J. Fluid Mech. 14, 136 (1962)

    Article  MATH  Google Scholar 

  11. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  12. Ishii, M.: Thermo-fluid dynamic theory of two-phase flow. In: Paris, Eyrolles, Ed. (Collection la Dir. des Etudes Rech. d’Electricite Fr. No. 22), p. 75 (1975)

  13. Massoudi, M.: On the importance of material frame-indifference and lift forces in multiphase flows. Chem. Eng. Sci. 57, 3687–3701 (2002)

    Article  Google Scholar 

  14. Johnson, G., Massoudi, M., Rajagopal, K.R.: Flow of a fluid—solid mixture between flat plates. Chem. Eng. Sci. 46, 1713–1723 (1991)

    Article  Google Scholar 

  15. Johnson, G., Massoudi, M., Rajagopal, K.R.: Flow of a fluid infused with solid particles through a pipe. Int. J. Eng. Sci. 29, 649–661 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Massoudi, M.: Constitutive relations for the interaction force in multicomponent particulate flows. Int. J. Non Linear Mech. 38, 313–336 (2003)

    Article  MATH  Google Scholar 

  17. Rajagopal, K.R.: On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Model Methods Appl. Sci. 17, 215–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Truesdell, C.: Sulle basi della thermomeccanica. Rand Lincei. 8, 33–38 (1957)

    MATH  Google Scholar 

  19. Truesdell, C.: Rational thermodynamics (1984)

  20. Massoudi, M.: A note on the meaning of mixture viscosity using the classical continuum theories of mixtures. Int. J. Eng. Sci. 46, 677–689 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Massoudi, M.: A mixture theory formulation for hydraulic or pneumatic transport of solid particles. Int. J. Eng. Sci. 48, 1440–1461 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209–244 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: applications. IMA J. Appl. Math. 17, 153–207 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bowen, R.M.: Theory of mixtures. Contin. Phys. 3, 1–127 (1976)

    Article  Google Scholar 

  25. Bedford, A., Drumheller, D.S.: Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21, 863–960 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Samohyl, I.: Thermomechanics of Irreversible Processes in Fluid Mixtures. Tuebner, Leipzig (1987)

    MATH  Google Scholar 

  27. Capek, M.: Overview of Mathematical Models for Blood Flow and Coagulation Process

  28. Rajagopal, K.R., Wineman, A.S., Gandhi, M.: On boundary conditions for a certain class of problems in mixture theory. Int. J. Eng. Sci. 24, 1453–1463 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gudhe, R., Yalamanchili, R.C., Massoudi, M.: Flow of granular materials down a vertical pipe. Int. J. Non Linear Mech. 29, 1–12 (1994)

    Article  MATH  Google Scholar 

  30. Anand, M., Rajagopal, K., Rajagopal, K.R.: A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood: review article. J. Theor. Med. 5, 183–218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Beevers, C.E., Craine, R.E.: On the determination of response functions for a binary mixture of incompressible newtonian fluids. Int. J. Eng. Sci. 20, 737–745 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Massoudi, M., Antaki, J.F.: An anisotropic constitutive equation for the stress tensor of blood based on mixture theory. Math. Probl. Eng. 2008, 1–30 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Anand, M., Rajagopal, K.R.: A shear-thinning viscoelastic fluid model for describing the flow of blood. Int. J. Cardiovasc. Med. Sci. 4, 59–68 (2004)

    Google Scholar 

  34. Thurston, G.B.: Viscoelasticity of human blood. Biophys. J. 12, 1205–1217 (1972)

    Article  Google Scholar 

  35. Chien, S., King, R.G., Skalak, R., Usami, S., Copley, A.L.: Viscoelastic properties of human blood and red cell suspensions. Biorheology. 12, 341–346 (1975)

    Google Scholar 

  36. Anand, M., Rajagopal, K.R.: A mathematical model to describe the change in the constitutive character of blood due to platelet activation. Comptes Rendus Mécanique. 330, 557–562 (2002)

    Article  MATH  Google Scholar 

  37. Wu, W.-T., Yang, F., Antaki, J.F., Aubry, N., Massoudi, M.: Study of blood flow in several benchmark micro-channels using a two-fluid approach. Int. J. Eng. Sci. 95, 49–59 (2015)

    Article  Google Scholar 

  38. Wu, W.T., Aubry, N., Massoudi, M.: Flow of granular materials modeled as a non-linear fluid. Mech. Res. Commun. 52, 62–68 (2013)

    Article  Google Scholar 

  39. Yeleswarapu, K.K., Kameneva, M.V., Rajagopal, K.R., Antaki, J.F.: The flow of blood in tubes: theory and experiment. Mech. Res. Commun. 25, 257–262 (1998)

    Article  MATH  Google Scholar 

  40. Brooks, D.E., Goodwin, J.W., Seaman, G.V.: Interactions among erythrocytes under shear. J. Appl. Physiol. 28, 172–177 (1970)

    Google Scholar 

  41. Yeleswarapu, K.K., Antaki, J.F., Kameneva, M.V., Rajagopal, K.R.: A mathematical model for shear-induced hemolysis. Artif. Organs 19, 576–582 (1995)

    Article  Google Scholar 

  42. Johnson, G., Rajagopal, K.R., Massoudi, M.: A Review of Interaction Mechanisms in Fluid-Solid Flows. USDOE Pittsburgh Energy Technology Center, Pittsburgh (1990)

    Book  Google Scholar 

  43. Batchelor, G.K.: Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52, 245–268 (1972)

    Article  MATH  Google Scholar 

  44. Tam, C.K.W.: The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38, 537–546 (1969)

    Article  MATH  Google Scholar 

  45. Rourke, M.D., Ernstene, A.C.: A method for correcting the erythrocyte sedimentation rate for variations in the cell volume percentage of blood. J. Clin. Invest. 8, 545 (1930)

    Article  Google Scholar 

  46. OpenCFD: OpenFOAM Programmer’s Guide Version 2.1.0. http://www.cfd-online.com/ (2011)

  47. Rusche, H.: Computational fluid dynamics of dispersed two-phase flows at high phase fractions. http://portal.acm.org/citation.cfm?doid=1806799.1806850 (2002)

  48. Ubbink, O.: Numerical prediction of two fluid systems with sharp interfaces (1997)

  49. Kim, J.: Multiphase CFD analysis and shape-optimization of blood-contacting medical devices (2012)

  50. Karino, T., Goldsmith, H.L.: Flow behaviour of blood cells and rigid spheres in an annular vortex. Philos. Trans. R. Soc. B Biol. Sci. 279, 413–445 (1977)

    Article  Google Scholar 

  51. Patrick, M.J., Chen, C.Y., Frakes, D.H., Dur, O., Pekkan, K.: Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal? In: Experiments in Fluids, pp. 887–904 (2011)

  52. Zhao, R., Marhefka, J.N., Shu, F., Hund, S.J., Kameneva, M.V., Antaki, J.F.: Micro-flow visualization of red blood cell-enhanced platelet concentration at sudden expansion. Ann. Biomed. Eng. 36, 1130–1141 (2008)

    Article  Google Scholar 

  53. Anand, M., Rajagopal, K., Rajagopal, K.R.: A model for the formation and lysis of blood clots. Pathophysiol. Haemost. Thromb. 34, 109–120 (2005)

    Article  Google Scholar 

  54. Anand, M., Rajagopal, K., Rajagopal, K.R.: A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J. Theor. Biol. 253, 725–738 (2008)

    Article  Google Scholar 

  55. Anand, M., Rajagopal, K., Rajagopal, K.R.: A viscoelastic fluid model for describing the mechanics of a coarse ligated plasma clot. Theor. Comput. Fluid Dyn. 20, 239–250 (2006)

    Article  MATH  Google Scholar 

  56. Liu, I.-S.: Continuum Mechanics. Springer Science & Business Media, New York (2013)

    Google Scholar 

  57. Batra, R.C.: Elements of continuum mechanics (2006)

  58. Rajagopal, K.R., Srinivasa, A.R.: A thermodynamic frame work for rate type fluid models. J. Nonnewton. Fluid Mech. 88, 207–227 (2000)

    Article  MATH  Google Scholar 

  59. Rajagopal, K.R., Srinivasa, A.R.: Modeling anisotropic fluids within the framework of bodies with multiple natural configurations. J. Nonnewton. Fluid Mech. 99, 109–124 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Funding was provided by National Institutes of Health (NIH grant 1 R01 HL089456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Massoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WT., Aubry, N., Antaki, J.F. et al. Flow of blood in micro-channels: recent results based on mixture theory. Int J Adv Eng Sci Appl Math 9, 40–50 (2017). https://doi.org/10.1007/s12572-016-0173-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-016-0173-2

Keywords

Navigation