Skip to main content
Log in

Life cycle cost estimation for high-speed transportation systems

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

This paper presents an innovative methodology and tool developed by Politecnico di Torino and the European Space Agency (ESA) to support life cycle cost (LCC) estimation for high-speed transportation systems. This ad hoc built-in tool aims at supporting engineers in cost estimations during conceptual and preliminary design phases. This includes the evaluation of research, development, test and evaluation costs (RDTE costs), production costs as well as direct and indirect operating costs (DOC and IOC). Eventually, the results of the LCC evaluation for two different high-speed transport vehicles is provided and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AEA:

Association of European Airlines

APU:

Auxiliary power unit

ATA:

Air Transport Association of America

ATR:

Air turbo rocket

AVIO:

Avionic system

CAV:

Cruise and acceleration vehicle

CER:

Cost estimation relationship

CpF:

Cost per flight

DMR:

Dual mode ramjet

DOC:

Direct operating cost

DOC + I:

Direct operating costs + interest

Dr:

Driver parameter

ECS:

Environmental control system

ELV:

Expendable launch vehicle

EPS:

Electrical power system

EU:

European Union

FAA:

Federal Aviation Administration

FCS:

Flight control system

FPS:

Fire protection system

FUEL:

Fuel system

FY:

Fiscal year

GUI:

Graphical user interface

HYD:

Hydraulic system

HST:

Hypersonic transport

IATA:

International Air Transport Association

IPS:

Ice protection system

ICAO:

International Civil Aviation Organization

INT:

Integration

IOC:

Indirect operating costs

LAPCAT:

Long-term advanced propulsion concepts and technologies

LCC:

Life cycle cost

LDG:

Landing gear

LH2 :

Liquid hydrogen

LR:

Launch rate

NASA:

National Aeronautics and Space Administration

OEW:

Operating empty weight

PBS:

Product breakdown structure

RDTE:

Research, development, test and evaluation

REL:

Reaction Engines Limited

RJ:

Ramjet

RLV:

Reusable launch vehicle

SI:

International System of Units

STRUCT:

Structure

TFU:

Theoretical first unit

TJ:

Turbojet

TOC:

Total operating cost

TP:

Technology parameter

TPS:

Thermal protection system

US:

United States

VEMS:

Vehicle energy management system

WBS:

Work breakdown structure

WYr:

Work-year

References

  1. Roskam, J.: Airplane design, part VIII: airplane cost estimation: design, development, manufacturing and operating. DARCorporation, Lawrence (KS) (1990)

    Google Scholar 

  2. Hirschel, E.H.: Basics of aerothermodynamics. Springer, Berlin (2005)

    Google Scholar 

  3. Steelant, J.: LAPCAT: high-speed propulsion technology. In: Advances on propulsion technology for high-speed aircraft. RTO-AVT-VKI Lecture Series, pp. 12–1–12–38. Rhode Saint Genèse (BE) (2008)

  4. Steelant, J.: Sustained hypersonic flight in Europe: technology drivers for LAPCAT II. In: 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, p. 7240. Bremen (DE) (2009)

  5. Koelle, D.E.: Handbook of cost engineering and design of space transportation systems (Revision 4b). TRANSCOST Systems, Ottobrunn (DE) (2013)

    Google Scholar 

  6. ATA: Standard method of estimating comparative direct operating costs of turbine powered transport. Washington, DC (1967)

  7. AEA: Association of european airlines: Short-Medium range aircraft—AEA requirements, G(T)5656, Brüssel (BE) (1989)

  8. Liebeck, R.H., et al.: Advanced subsonic airplane design and economic studies. NASA Lewis Research Center, Cleveland (OH) (1995)

    Google Scholar 

  9. Repic, E.M., et al.: A methodology for hypersonic transport technology planning. NASA Langley Research Center, Hampton (VA) (1973)

    Google Scholar 

  10. Raymer, D.: Aircraft design: a conceptual approach. American Institute of Aeronautics and Astronautics Inc., Reston (VA) (2012)

    Book  Google Scholar 

  11. Petersen, R.H., Waters, M.H.: Hypersonic transports-economics and environmental effects. NASA Advanced Concepts and Missions Division, Moffet t Field (CA) (1972)

    Google Scholar 

  12. FAA: Economic values for FAA investment and regulatory decisions, a guide. https://www.faa.gov/regulations_policies/policy_guidance/benefit_cost/media/ECONOMICVALUESFORFAAINVESTMENTANDREGULATORYDECISIONS10032007.pdf. Accessed 18 Oct 2019

  13. Larson, W.J., Wertz, J.R.: Space mission analysis and design. Microcosm, Inc., Torrance (1992)

    Book  Google Scholar 

  14. Fusaro, R., Ferretto, D., Vercella, V., Viola, N., Steelant, J., Fernandez Villace, V.: LCC estimation methodology for hypersonic transportation systems. ICAS 2018, Belo Horizonte (2018)

    Google Scholar 

  15. Varvill, R., Bond, A.: Cost analysis of configuration a2 vehicle and scimitar engine. In: Long-term advanced propulsion concept and technologies (LAPCAT) Deliverable, D.2.1.4. Reaction Engines Ltd., Abingdon (UK) (2006)

  16. Vercella, V., Ferretto, D., Fusaro, R., Viola, N., Fernandez Villace V., Steelant J.: Towards future LH2 productive scenarios: economic assessment and environmental effects on hypersonic transportation systems. In: Conference on High-speed vehicle science and technology (HiSST). Moscow (RU) (2018)

  17. Gulliver, B.S., Finger, G.W.: Spaceport infrastructure cost trends. In: AIAA SPACE 2014 Conference and Exposition, p. 4397. San Diego (CA) (2014)

  18. Spaceport America Website. https://www.spaceportamerica.com/

  19. Finger, G., et al.: Aerospaceports-economic and schedule guidelines. In: 9th AIAA aviation technology, integration, and operations conference (ATIO) and aircraft noise and emissions reduction symposium (ANERS). Hilton Head (SC) (2006)

  20. Webber, D.: The new commercial spaceports. In: Space 2004 conference and exhibit, p. 5860. San Diego (CA) (2004)

  21. Penn, J.P., Lindley, C.A.: Requirements and approach for a space tourism launch system. Acta Astronaut. 52(1), 49–75 (2003)

    Article  Google Scholar 

  22. Margaretic, P., Steelant, J.: Economical assessment of commercial high-speed transport. CEAS Aeronaut. J. 9(4), 747–764 (2018)

    Article  Google Scholar 

  23. Ferjan, K.: IATA Airline operational cost task force (AOCTF). IATA, Geneva (CH) (2013)

    Google Scholar 

  24. Airline Operating Costs and Productivity. https://www.icao.int/MID/Documents/2017/Aviation%20Data%20and%20Analysis%20Seminar/PPT3%20-%20Airlines%20Operating%20costs%20and%20productivity.pdf. Accessed 3 Dec 2019

  25. Steelant, J., et al.: Achievements obtained for sustained hypersonic flight within the LAPCAT-II project. In: 20th AIAA international space planes and hypersonic systems and technologies, p. 3677. Glasgow (UK) (2015)

  26. Bond, A.: Turbine-Based combined cycles, advances on propulsion technology for high-speed Aircraft. RTO-AVT-VKI Lecture series, Rhode Saint Genèse (BE) (2007)

  27. Steelant, J., van Duijn, M.: Structural analysis of the LAPCAT-MR2 waverider based vehicle. In: 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p. 2336. San Francisco (CA) (2011)

  28. Roncioni, P., Natale, P., Marini, M., Langener, T., Steelant, J.: Numerical simulations and performance assessment of a scramjet powered cruise vehicle at Mach 8. J. Aerosp. Sci. Technol. 42, 218–228 (2015)

    Article  Google Scholar 

  29. Vellaramkalayil, J. J., et al.: Injector layout optimization for the LAPCAT MR2 mach 8 cruiser. In: Space Propulsion Conference 2012 (AAAF-ESANES). Bordeaux (FR) (2012)

  30. Langener, T., et al.: Design and optimization of a small scale M = 8 scramjet propulsion system. In: Space Propulsion 2012 (AAAF-ESANES). Bordeaux (FR) (2012)

  31. Langener, T., Steelant, J., Roncioni, P., Natale, P., Marini, M.: Preliminary performance analysis of the LAPCAT-MR2 by means of nose-to-tail computations. In: 18th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France, AIAA-2012-5872 (2012)

  32. Meerts, C., Steelant, J.: Air intake design for the acceleration propulsion unit of the LAPCAT MR2 hypersonic aircraft. In: 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich, Germany (2013)

  33. Steelant, J., Langener, T.: The LAPCAT-MR2 hypersonic cruiser concept, ICAS-2014-0428. In: 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg (2014)

  34. Ferretto, D., Vercella, V., Fusaro, R., Viola, N., Fernandez-Villace, V., Steelant, J.: Preliminary design and sizing of the thermal and energy management subsystem for LAPCAT MR2. In: 1st International Conference on High-Speed Vehicle Science and Technology (HiSST), Moscow, Russia (2018)

  35. Vandervelden, A.: An economic model for evaluating high-speed aircraft designs. NASA Ames Research Center, Moffett Field (CA) (1989)

    Google Scholar 

  36. IATA Industry Economic Performance Statistics December (2018). https://www.iata.org/publications/economics/Reports/Industry-Econ-Performance/Airline-Industry-Economic-Performance-December-18-Datatables.pdf. Accessed 3 Dec 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Fusaro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1: Summary of TRANSCOST-modified CERs implemented in HyCost tool

1.1.1 RDTE costs

See Table 15.

  • High-speed advanced aircraft

    $$ H_{\text{VA}} = 2169M_{\text{OEW}}^{0.262} f_{1} f_{2} f_{3} f_{8} f_{10}^{'} f_{11} . $$
  • Turbojet

    $$ H_{\text{ET}}^{ '} = \left( {232.4M_{{\text{E}}_\text{dry}}^{0.509} + 1.12v} \right)f_{1} f_{3} . $$
  • Ramjet

    $$ H_{\text{ER}} = 355M_{{\text{E}}_\text{dry}}^{0.295} f_{1} f_{3} . $$
  • Combined cycle engine

    $$ H_{\text{CCE}} = C_{\text{complexity}} (k_{\text{TJ}} H_{\text{ET}}^{'} + k_{\text{RJ}} H_{\text{ER}} )f_{1} f_{3} . $$
  • Fuel system

    $$ S_{{{\text{Fuel}}_{\text{dev}} }} = \left( {0.1M_{\text{OEW}}^{0.68} + 0.49M_{{\text{E}}_\text{dry}}^{0.51} } \right)f_{1} f_{3} . $$
  • TPS

    $$ S_{{{\text{TPS}}_{\text{dev}} }} = \left( {0.56M_{\text{OEW}}^{0.59} + 1.8q^{0.51} } \right)f_{1} f_{3} . $$
  • TEMS

    $$ S_{{{\text{TEMS}}_{\text{dev}} }} = \left( {5.73M_{\text{OEW}}^{0.26} + 0.8P^{0.17} + 0.53\dot{m}_{{_{{{\text{BO}}_{\text{LH2}} }} }}^{0.19} } \right)f_{1} f_{3} . $$
  • Total development cost

    $$ C_{\text{TOT}} = f_{0} (H_{\text{VA}} + \mathop \sum \limits_{i = 1}^{{n_{E} }} H_{\text{Ei}} )f_{6} f_{7} . $$
Table 15 List of cost drivers for RDTE CERs

1.1.2 Production cost

See Table 16.

  • High-speed advanced aircraft

    $$ F_{\text{VF}}^{'} = \left( {0.34M_{\text{TOEW}}^{1.75} + 7.06v_{k}^{0.4} } \right)f_{10}^{'} . $$
  • Turbojet

    $$ F_{\text{ET}}^{'} = 2.29M_{{{\text{E}}_{\text{dry}} }}^{0.530} + 0.50v^{0.60} . $$
  • Ramjet

    $$ F_{\text{ER}} = 5.63T^{0.35} . $$
  • Combined cycle engine

    $$ F_{\text{CCE}} = C_{\text{complexity}} (k_{\text{TJ}} F_{\text{ET}}^{ '} + k_{\text{RJ}} F_{\text{ER}} ). $$
  • Fuel system

    $$ S_{{{\text{Fuel}}_{\text{prod}} }} = 0.48M_{\text{OEW}}^{0.38} + 0.5M_{{{\text{E}}_{\text{dry}} }}^{0.39} . $$
  • TPS

    $$ S_{{{\text{TPS}}_{\text{prod}} }} = 0.51M_{\text{OEW}}^{0.19} + 3.41q^{0.12} + 0.68Q^{0.11} . $$
  • TEMS

    $$ S_{{{\text{TEMS}}_{\text{prod}} }} = 5.41M_{\text{OEW}}^{0.23} + 0.79P^{0.15} + 0.52\dot{m}_{{{\text{BO}}_{{{\text{LH}}2}} }}^{0.19} . $$
  • Total production cost

    $$ C_{F} = f_{0}^{\prime N} \left( {\sum\limits_{i = 1}^{n} {F_{{V_{i} }} } f_{{4_{i} }} + \sum\limits_{j}^{{n_{e} }} {F_{{E_{j} }} } f_{{4_{j} }} } \right)f_{9} . $$
Table 16 List of cost drivers for production CERs

1.2 Appendix 2: Summary of NASA-modified ATA CERs implemented in HyCost tool

1.2.1 Fuel cost (DOCf)

The fuel cost per ton-mile in SI units is:

$$ {\text{DOC}}_{\text{Fuel}} = \frac{{1677.78 C_{f} \left( {\frac{{m_{\text{fT}} }}{{m_{\text{GTO}} }}} \right)\left( {1 - K_{R} } \right)}}{{\left( {\text{LF}} \right) \left( {\frac{{m_{\text{PL}} }}{{m_{\text{GTO}} }}} \right)R_{T} }}, $$

where \( C_{f} \) is the cost of fuel per unit mass (in kg); \( m_{\text{GTO}} \) is the gross take-off mass; \( m_{\text{PL}} \) is the payload mass; \( K_{R} \) is the reserve fuel fraction [%]. \( R_{T} \) is the range in kilometers.

1.2.2 Crew cost (DOCC)

The crew cost per ton-mile in SI units is:

$$ {\text{DOC}}_{C} = \frac{{\frac{320}{{m_{\text{GTO}} }}}}{{0.63\left( {\text{LF}} \right) \left( {\frac{{m_{\text{PL}} }}{{m_{\text{GTO}} }}} \right){\text{M }}\left( {\frac{{V_{\text{B}} }}{{V_{\text{CR}} }}} \right)}}, $$

where \( V_{\text{CR}} \) is the cruise speed; \( V_{\text{B}} \) is the block speed; M is the cruise Mach.

1.2.3 Insurance cost (DOCI)

The insurance cost per ton-mile in SI units is:

$$ {\text{DOC}}_{I} = \frac{{\left( {\text{IR}} \right) \left( {\frac{{{\text{C}}_{\text{HST}} }}{{m_{\text{GTO}} }}} \right)}}{{0.63\left( {\text{LF}} \right) \left( {\frac{{m_{\text{PL}} }}{{m_{\text{GTO}} }}} \right){\text{M }}\left( {\frac{{V_{\text{B}} }}{{V_{\text{CR}} }}} \right)U}}, $$

where IR is the annual insurance rate; \( C_{\text{HST}} \) is the acquisition cost of the aircraft; U is the annual utilization in block hours/year.

1.2.4 Depreciation cost (DOCD)

The depreciation cost per ton-mile in SI units is:

$$ {\text{DOC}}_{D} = \frac{{1.1\left( {\frac{{C_{\text{HST}} }}{{m_{\text{GTO}} }}} \right) + 0.3\left( {\frac{{C_{\text{TJ}} }}{{m_{\text{GTO}} }} + \frac{{C_{\text{RJ}} }}{{m_{\text{GTO}} }}} \right)}}{{0.63 \left( {\text{LF}} \right) \left( {\frac{{m_{\text{PL}} }}{{m_{\text{GTO}} }}} \right)M \left( {\frac{{V_{\text{B}} }}{{V_{\text{CR}} }}} \right)U L_{d} }}, $$

where \( C_{\text{TJ}} \) is the cost of the turbojet engines; \( C_{\text{RJ}} \) is the cost of the ramjet engines.

1.2.5 Maintenance cost (DOCM)

Maintenance cost is given by the sum of labor and material cost for both airframe and engines. The NASA-modified ATA CERs introduce the following four coefficients to estimate HST maintenance cost for labor and material of both turbojet and ramjet components:

  • \( K_{\text{LTJ}} \), turbojet maintenance labor ratio (HST turbojets to present subsonic turbojets);

  • \( K_{\text{MTJ}} \), turbojet maintenance material ratio (HST turbojets to present subsonic turbojets);

  • \( K_{\text{LRJ}} \), ramjet maintenance labor ratio (HST ramjets to present subsonic turbojets);

  • \( K_{\text{MRJ}} \), ramjet maintenance material ratio (HST ramjets to present subsonic turbojets).

The following six contributions shall be summed:

  1. 1.

    DOCM/AF/L, maintenance labor effort required for the airframe (cost per ton-mile):

$$ {\text{DOC}}_{{{\text{M}}/{\text{AF}}/{\text{L}}}} = \frac{{\left( {3.70 + 2.18 t_{f} } \right)\left[ {\frac{0.05}{1000} \left( {\frac{{m_{\text{AF}} }}{{m_{\text{GTO}} }} + \frac{{m_{\text{AV}} }}{{m_{\text{GTO}} }}} \right) + \left( {\frac{3}{{m_{\text{GTO}} }} - \frac{315}{{\left( {\frac{{2(m_{\text{AF}} + m_{\text{AV}} )}}{1000} + 120} \right)m_{\text{GTO}} }}} \right)} \right]M^{{\frac{1}{2}}} \left( {r_{L} } \right)}}{{\left( {\text{LF}} \right)\left( {\frac{{m_{\text{PL}} }}{{m_{\text{GTO}} }}} \right)\frac{{R_{T} }}{1000}}}, $$

where mAF is the mass of airframe in kilograms, mAV is the mass of avionics in kilograms, mGTO is the maximum take-off mass in kilograms, rL is the average labor rate per hour for all personnel involved in maintenance activities.

  1. 2.

    DOCM/AF/M, maintenance material cost for the airframe (cost per ton-mile):

$$ {\text{DOC}}_{{{\text{M}}/{\text{AF}}/{\text{M}}}} = \frac{{\left( {5.22 \cdot t_{f} + 10.57} \right)\left( {\frac{{C_{\text{HST}} }}{{m_{\text{GTO}} }} - \frac{{C_{\text{TJ}} }}{{m_{\text{GTO}} }} - \frac{{C_{\text{RJ}} }}{{m_{\text{GTO}} }}} \right)}}{{\left( {\text{LF}} \right)\left( {\frac{{m_{\text{PL}} }}{{m_{\text{GTO}} }}} \right)R_{T} \cdot 10^{3} }}. $$
  1. 3.

    DOCM/TJ/L, maintenance labor effort required for the turbojet engines (cost per ton-mile):

$$ {\text{DOC}}_{{{\text{M}}/{\text{TJ}}/{\text{L}}}} = \frac{{\left( {\frac{\text{T}}{\rm{W}}} \right)_{\text{GTO}} \left( {1 + k_{TJ} \cdot t_{F} } \right)\left( {\frac{9.91}{{T_{\text{TJ}} /10^{3} }} + 0.1} \right)r_{L} K_{\text{LTJ}} }}{{\left( {\text{LF}} \right)\left( {\frac{{m_{\text{PL}} }}{{m_{\text{GTO}} }}} \right)R_{T} }}, $$

where \( T_{\text{TJ}} \) is the thrust of each turbojet engine in N; tF is the number of flight hours per flight; kTJ is the time of operation of the turbojet engines as a ratio of tF.

  1. 4.

    DOCM/TJ/M, the maintenance material required for the turbojet engines (cost per ton-mile).

$$ {\text{DOC}}_{{{\text{M}}/{\text{TJ}}/{\text{M}}}} = \frac{{\left( {\frac{{C_{\text{TJ}} }}{{m_{\text{GTO}} }}} \right)\left( {0.034 \cdot k_{\text{TJ}} \cdot t_{F} + 0.042} \right) K_{\text{MTJ}} }}{{\left( {\text{LF}} \right)\left( {\frac{{m_{\text{PL}} }}{{m_{\text{GTO}} }}} \right)R_{T} }}. $$
  1. 5.

    DOCM/RJ/L, the maintenance labor required for the ramjet engines (cost per ton-mile):

$$ {\text{DOC}}_{{{\text{M}}/{\text{RJ}}/{\text{L}}}} = \frac{{ \left( {1 + k_{\text{RJ}} \cdot t_{F} } \right)\left( {\frac{{1.01 N_{\text{RJ}} \left( {\frac{L}{D}} \right)}}{{m_{\text{GTO}} / 10^{3} }} + 0.1} \right)r_{L} K_{\text{LRJ}} }}{{\left( {\frac{L}{D}} \right)\left( {\text{LF}} \right)\left( {\frac{{m_{\text{PL}} }}{{m_{\text{GTO}} }}} \right)R_{T} }}, $$

where \( \frac{L}{D} \) is the lift-to-drag ratio.

  1. 6.

    DOCM/RJ/M, the maintenance material cost for ramjet engines (cost per ton-mile):

$$ {\text{DOC}}_{{{\text{M}}/{\text{RJ}}/{\text{M}}}} = \frac{{\left( {\frac{{C_{\text{RJ}} }}{{m_{\text{GTO}} }}} \right)\left( {0.034 \cdot k_{\text{RJ}} \cdot t_{F} + 0.042} \right) K_{\text{MRJ}} }}{{\left( {\text{LF}} \right)\left( {\frac{{m_{\text{PL}} }}{{m_{\text{GTO}} }}} \right)R_{T} }}. $$

1.3 Appendix 3: HyCost tool screenshots

See Figs. 12, 13, 14, and 15.

Fig. 12
figure 12

Example of HyCost input windows: vehicle and mission data

Fig. 13
figure 13

Example of HyCost input windows: development, production and operating scenario

Fig. 14
figure 14

Example of HyCost DOC output window

Fig. 15
figure 15

HyCost window for the evaluation of technological improvements

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusaro, R., Viola, N., Ferretto, D. et al. Life cycle cost estimation for high-speed transportation systems. CEAS Space J 12, 213–233 (2020). https://doi.org/10.1007/s12567-019-00291-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-019-00291-7

Keywords

Navigation