Skip to main content
Log in

The absolute frequency reference unit for the spaceborne methane-sensing lidar mission MERLIN

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Lidar systems have become an important technology in a variety of industrial and scientific applications. For terrestrial applications, such systems have been developed over the last decade and are commercially available. In space, this technology does not have a comparable maturity level and is still far from being a standard technology. In this paper, we present the operating principle, the design, and performance of the spaceborne absolute frequency reference used in the instrument of the French–German methane remote-sensing lidar mission, MERLIN. The MERLIN instrument operates on a methane absorption feature at 1645.55 nm. To achieve the accuracy goal for the column-integrated methane concentration of 3 ppb, absolute frequency accuracy levels in the low MHz range are required. The absolute frequency reference unit provides the stabilized seed lasers for the high-power laser sources at the required wavelengths and measures the absolute frequency of the outgoing laser pulses by means of a wavemeter. The focus of this paper is on the implementation of the absolute frequency referencing and the obtained frequency stability and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ehret, G., Bousquet, P., Pierangelo, C., Alpers, M., et al.: MERLIN: a French-German space lidar mission dedicated to atmospheric methane. Remote Sens. 9, 1052 (2017)

    Article  Google Scholar 

  2. Ehret, G., Kiemle, C., Wirth, M., Amediek, A., Fix, A.: Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl. Phys. B 90, 593–608 (2008)

    Article  Google Scholar 

  3. Delahaye, T., Maxwell, S.E., Reed, Z.D., Lin, H., Hodges, J.T., Sung, K., Devi, V.M., Warneke, T., Spietz, P., Tran, H.: Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission. J. Geophys. Res. Atmos. 121, 7360–7370 (2016)

    Article  Google Scholar 

  4. Nikolov, S., Wührer, C., Kühl, C., Bode, M., Hupfer, W., Lucarelli, S.: MERLIN: design of an IPDA lidar instrument. CEAS Space J. (2019) (accepted)

  5. Fix, A., Amediek, A., Ehret, G., Groß, S., Kiemle1, C., Reitebuch, O., Wirth, M.: On the benefit of airborne demonstrators for space borne lidar missions. In: Proceedings of SPIE, international conference on space optics—ICSO 2016, vol. 10562 (2016)

  6. Fix, A., Matthey, R., Amediek1, A., Ehret, G., Gruet, F., Kiemle, C., Klein, V., Mileti, G., Pereira do Carmo, J., Quatrevalet, Q.: Investigations on frequency and energy references for a space-borne integrated path differential absorption lidar. In: Proceedings of SPIE, international conference on space optics—ICSO 2014, vol. 10563 (2014)

  7. Heinecke, D., Liebherr, T., Diekmann, C., et al.: The absolute frequency reference unit for the methane-sensing lidar mission MERLIN. In: Proceedings of SPIE, international conference on space optics—ICSO 2016, vol. 10562 (2016)

  8. Schäfer, H., Heinecke, D., Liebherr, T., et al.: Flight design of the absolute frequency reference unit for the methane-sensing LIDAR mission MERLIN. In: Proceedings of SPIE, international conference on space optics—ICSO 2018 (2018)

  9. Bode, M., Alpers, M., Millet, B., Ehret, G., Flamant, P.: MERLIN: an integrated path differential absorption (IPDA) lidar for global methane remote sensing. In: Proceedings of SPIE, international conference on space optics—ICSO 2014, vol. 10563 (2014)

  10. Webster, C.R., Menzies, R.T., Hinkley, E.D.: Infrared laser absorption: theory and applications. In: Measures, R.M. (ed.) Laser Remote Chemical Analysis. Wiley, Hoboken (1988)

    Google Scholar 

  11. Numata, K., Chen, J.R., Wu, S.T., Abshire, J.B., Krainak, M.A.: Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide. Appl. Opt. 50, 1047 (2011)

    Article  Google Scholar 

  12. Malyon, D.J., Smith, D.W., Berry, R.W.: Wavelength sensed mode control of semiconductor lasers. Electron. Lett. 16, 744–746 (1980)

    Article  Google Scholar 

  13. Schilt, S., Thévenaz, L.: Experimental method based on wavelength-modulation spectroscopy for the characterization of semiconductor lasers under direct modulation. Appl. Opt. 43, 4446 (2004)

    Article  Google Scholar 

  14. Rothman, L.S., Gordon, L.E., Babikov, Y., Barbe, A., et al.: The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Trans. 130, 4–50 (2013)

    Article  Google Scholar 

  15. Fix, A., Büdenbender, C., Wirth, M., Quatrevalet, M., Amediek, A., Kiemle, C., Ehret, G.: Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4. In: Proceedings volume 8182, lidar technologies, techniques, and measurements for atmospheric remote sensing VII, 818206 (2011)

  16. Mahnke, P., Klingenberg, H.H., Fix, A., Wirth, M.: Dependency of injection seeding and spectral purity of a single resonant KTP optical parametric oscillator on the phase matching condition. Appl. Phys. B 89, 1–7 (2007)

    Article  Google Scholar 

  17. Fox, R.W., Diddams, S.A., Bartels, A., Hollberg, L.: Optical frequency measurements with the global positioning system: tests with an iodine-stabilized He–Ne laser. Appl. Opt. 44, 113–120 (2005)

    Article  Google Scholar 

  18. Stone, J.A., Egan, P.: an optical frequency comb tied to GPS for laser frequency/wavelength calibration. J. Res. Nat. Inst. Stand. Technol. 115, 413–431 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mathieu Quatrevalet, Andreas Fix, and Gerhard Ehret for the possibility and the support to perform the absolute frequency calibration of the MERLIN FRU with a GPS-referenced frequency comb at the DLR IPA in Oberpfaffenhofen.

The presented activities are being performed under a contract of the “Bundesministeriums für Wirtschaft und Energie” (BMWi), number 50EP1301. The work is part of a cooperation of DLR and CNES for the French–German MERLIN mission. The responsibility of the content of this publication lies with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Heinecke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinecke, D., Liebherr, T., Battles, D. et al. The absolute frequency reference unit for the spaceborne methane-sensing lidar mission MERLIN. CEAS Space J 11, 459–473 (2019). https://doi.org/10.1007/s12567-019-00268-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-019-00268-6

Keywords

Navigation