Skip to main content
Log in

Impact of cisplatin administration on cerebellar cortical structure and locomotor activity of infantile and juvenile albino rats: the role of oxidative stress

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The central neurotoxicity of cisplatin (CisPt) has always raised questions especially during development, but few studies are available. Hence, this work was designed to assess the CisPt’s impacts on the postnatal rat cerebellum via evaluation of locomotor activity, histological and immunohistochemical studies, and to focus on cerebellar oxidative stress-related alterations. Eighty newborn pups were divided into 2 equal experimental groups: the control group was kept without any treatment and CisPt-treated group received a single subcutaneous injection of CisPt (5 μg /g b.w.) in their nape at PD10. Ten rats at PD11, PD17, and PD30 ages were weighed, then deeply anesthetized and sacrificed. For locomotor assessment, 20 pups were divided equally into control and CisPt-treated groups and tested at PD11-13, PD15-17, and PD28-30 ages. CisPt-treated rats suffered from decreased motor activity and showed decreased body and cerebellar weights, reduced levels of enzymatic antioxidants (SOD and CAT), and non-enzymatic antioxidant defense (GSH), and increase of lipid peroxidation marker (MDA). Histopathologically, CisPt sowed deleterious changes within cerebellar cortical layers in the form of vacuolations, decreased thickness, and hemorrhage (in PD17), while Purkinje cells exhibited profound degenerative changes in the form of swelling, disrupted arrangement, distortion, and nuclear shrinkage. In CisPt-treated rats, GFAP demonstrated upregulated, hypertrophied, and branched Bergmann glial fibers and reactive astrogliosis. Immuno-localization of Ki-67-positive cells revealed defective migration associated with decreased proliferation in early ages in addition to glial proliferation in PD30. In conclusion, CisPt causes oxidative stress-related deleterious effects on structure of developing cerebellar cortex and affects locomotor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abou-Elghait A, El-Gamal DA, Abdel-Sameea AR, Mohamed AA (2010) Effect of cisplatin on the cerebellar cortex and spinal cord of adult male albino rat and the possible role of vitamin E: light and electron microscopic study. Egypt J Histol 33:202–212. 

    Google Scholar 

  • Aboulhoda BE, Hassan SS (2018) Effect of prenatal tramadol on postnatal cerebellar development: Role of oxidative stress. J Chem Neuroanat 94:102–118

    CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  • Ahmad S (2010) Platinum–DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers 7:543–566

    CAS  PubMed  Google Scholar 

  • Ahmed O, Ahmed R, El-Gareib A, El-Bakry A, Abd El-Tawab S (2012) Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II—The developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int J Dev Neurosci 30:517–537

    CAS  PubMed  Google Scholar 

  • Ahmed RG (2005) Is there a balance between oxidative stress and antioxidant defense system during development? Med J Islamic World Acad Sci 15:55–63. 

    Google Scholar 

  • Almutairi MM, Alanazi WA, Alshammari MA et al (2017) Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model. BMC Complement Altern Med 17:472

    PubMed  PubMed Central  Google Scholar 

  • Arafa MH, Atteia HH (2020) Protective role of epigallocatechin gallate in a rat model of cisplatin-induced cerebral inflammation and oxidative damage: impact of modulating NF-κB and Nrf2. Neurotox Res 37:380–396

    CAS  PubMed  Google Scholar 

  • Argyriou AA, Polychronopoulos P, Koutras A et al (2007) Clinical and electrophysiological features of peripheral neuropathy induced by administration of cisplatin plus paclitaxel-based chemotherapy. Eur J Cancer Care 16:231–237

    CAS  Google Scholar 

  • Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434:201–210

    CAS  PubMed  Google Scholar 

  • Aydin B, Unsal M, Sekeroglu ZA, Gülbahar Y (2011) The antioxidant and antigenotoxic effects of Pycnogenol® on rats treated with cisplatin. Biol Trace Elem Res 142:638–650

    CAS  PubMed  Google Scholar 

  • Bâ A, Seri BV (1995) Psychomotor functions in developing rats: ontogenetic approach to structure-function relationships. Neurosci Biobehav Rev 19:413–425

    PubMed  Google Scholar 

  • Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335–358

    CAS  PubMed  Google Scholar 

  • Bancroft JD, Layton C (2018) The hematoxylins and eosin. In: Suvarna KS, Layton C, Bancroft JD (ed.) Bancroft's Theory and Practice of Histological Techniques E-Book. 8th ed. : Elsevier Health Sciences. Ch:10, Pp 126–138.

    Google Scholar 

  • Barichello T, Fortunato JJ, Vitali ÂM et al (2006) Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med 34:886–889

    PubMed  Google Scholar 

  • Bazrgar M, Goudarzi I, Lashkarbolouki T, Salmani ME (2015) Melatonin ameliorates oxidative damage induced by maternal lead exposure in rat pups. Physiol Behav 151:178–188

    CAS  PubMed  Google Scholar 

  • Bernardi P, Krauskopf A, Basso E et al (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099

    CAS  PubMed  Google Scholar 

  • Beutler E (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  • Bodenner DL, Dedon PC, Keng PC, Borch RF (1986) Effect of diethyldithiocarbamate on cis-diamminedichloroplatinum (II)-induced cytotoxicity, DNA cross-linking, and γ-glutamyl transpeptidase inhibition. Can Res 46:2745–2750

    CAS  Google Scholar 

  • Brooks SP, Trueman RC, Dunnett SB (2012) Assessment of motor coordination and balance in mice using the rotarod, elevated bridge, and footprint tests. Curr Protoc Mouse Bio 2:37–53

    Google Scholar 

  • Bullwinkel J, Baron-Lühr B, Lüdemann A, Wohlenberg C, Gerdes J, Scholzen T (2006) Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol 206:624–635

    CAS  PubMed  Google Scholar 

  • Carozzi V, Marmiroli P, Cavaletti G (2010) The role of oxidative stress and anti-oxidant treatment in platinum-induced peripheral neurotoxicity. Curr Cancer Drug Targets 10:670–682

    CAS  PubMed  Google Scholar 

  • Cata JP, Weng H-R, Dougherty PM (2008) Behavioral and electrophysiological studies in rats with cisplatin-induced chemoneuropathy. Brain Res 1230:91–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Pérez JM (2007) Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 7:3–18.

    Article  CAS  PubMed  Google Scholar 

  • Cerri S, Piccolini VM, Santin G et al (2011) The developmental neurotoxicity study of platinum compounds. Effects of cisplatin versus a novel Pt (II) complex on rat cerebellum. Neurotoxicol Teratol 33:273–281

    CAS  PubMed  Google Scholar 

  • Chen Y, Qin C, Huang J et al (2020) The role of astrocytes in oxidative stress of central nervous system: a mixed blessing. Cell Prolif 53:e12781

    PubMed  PubMed Central  Google Scholar 

  • Chirino YI, Pedraza-Chaverri J (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 61:223–242

    CAS  PubMed  Google Scholar 

  • Cikriklar HI, Uysal O, Ekici MA et al (2016) Effectiveness of GFAP in determining neuronal damage in rats with induced head trauma. Turk Neurosurg 26:878–889

    PubMed  Google Scholar 

  • Coyoy A, Olguín-Albuerne M, Martínez-Briseño P, Morán J (2013) Role of reactive oxygen species and NADPH-oxidase in the development of rat cerebellum. Neurochem Int 62:998–1011

    CAS  PubMed  Google Scholar 

  • Croce AC, Pisu MB, Roda E, Avella D, Bernocchi G, Bottiroli G (2006) Autofluorescence properties of rat cerebellum cortex during postnatal development. Lasers Surg Med off J Am Soc Laser Med Surg 38:598–607

    Google Scholar 

  • D’Arca D, Zhao X, Xu W, Ramirez-Martinez NC, Iavarone A, Lasorella A (2010) Huwe1 ubiquitin ligase is essential to synchronize neuronal and glial differentiation in the developing cerebellum. Proc Natl Acad Sci 107:5875–5880

    PubMed  PubMed Central  Google Scholar 

  • Diaz MR, Vollmer CC, Zamudio-Bulcock PA et al (2014) Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABAA receptor δ subunit in cerebellar granule neurons and delays motor development in rats. Neuropharmacology 79:262–274

    CAS  PubMed  Google Scholar 

  • Dief AE, Hassan PS, Hartmut O, Jirikowski GF (2018) Neuronal and glial regeneration after focal cerebral ischemia in rat, an immunohistochemical and electron microscopical study. Alexandria J Med 54:699–704

    Google Scholar 

  • Fauquier T, Chatonnet F, Picou F et al (2014) Purkinje cells and Bergmann glia are primary targets of the TRα1 thyroid hormone receptor during mouse cerebellum postnatal development. Development 141:166–175

    CAS  PubMed  Google Scholar 

  • Feng Y, Wang X (2012) Antioxidant therapies for Alzheimer’s disease. Oxid Med Cell Longev 2012:472932

    PubMed  PubMed Central  Google Scholar 

  • Florea AM, Büsselberg D (2009) Anti-cancer drugs interfere with intracellular calcium signaling. Neurotoxicology 30:803–810

    CAS  PubMed  Google Scholar 

  • Gad SC (2019) Rodent Models for Toxicity Testing and Biomarkers. In: Gupta RC (ed.) Biomarkers in Toxicology 2nd.ed.: Academic Press, Ch:2, pp. 7–73.

    Google Scholar 

  • Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev 2012:428010

    PubMed  PubMed Central  Google Scholar 

  • Garcia JM, Cata JP, Dougherty PM, Smith RG (2008) Ghrelin prevents cisplatin-induced mechanical hyperalgesia and cachexia. Endocrinology 149:455–460

    CAS  PubMed  Google Scholar 

  • Garcia JM, Scherer T, Chen J-a et al (2013) Inhibition of cisplatin-induced lipid catabolism and weight loss by ghrelin in male mice. Endocrinology 154:3118–3129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist L, Marais L, Tanner L (2014) Comparison of two chemotherapy-induced peripheral neuropathy measurement approaches in children. Support Care Cancer 22:359–366

    CAS  PubMed  Google Scholar 

  • Golchin L, Shabani M, Harandi S, Razavinasab M (2015) Pistachio supplementation attenuates motor and cognition impairments induced by cisplatin or vincristine in rats. Adv Biomed Res 4:92–92

    PubMed  PubMed Central  Google Scholar 

  • Gulec M, Oral E, Dursun OB et al (2013) Mirtazapine protects against cisplatin-induced oxidative stress and DNA damage in the rat brain. Psychiatry Clin Neurosci 67:50–58

    CAS  PubMed  Google Scholar 

  • Guo Z, Wang X, Xiao J et al (2013) Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice. Brain Res 1532:14–20

    CAS  PubMed  Google Scholar 

  • Hamm RJ, Pike BR, O’DELL DM, Lyeth BG, Jenkins LW, (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 11:187–196

    CAS  PubMed  Google Scholar 

  • Hanzel M, Wingate RJ, Butts T (2015) Ex vivo culture of chick cerebellar slices and spatially targeted electroporation of granule cell precursors. Journal of visualized experiments:JOVE, e53421-e53421

  • Hashem HE, Safwat ME-D, Algaidi S (2012) The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). J Mol Histol 43:179–186

    CAS  PubMed  Google Scholar 

  • Hassan I, Chibber S, Khan AA, Naseem I (2013) Cisplatin-induced neurotoxicity in vivo can be alleviated by riboflavin under photoillumination. Cancer Biother Radiopharm 28:160–168

    CAS  PubMed  Google Scholar 

  • Hesketh P, Van Belle S, Aapro M et al (2003) Differential involvement of neurotransmitters through the time course of cisplatin-induced emesis as revealed by therapy with specific receptor antagonists. Eur J Cancer 39:1074–1080

    CAS  PubMed  Google Scholar 

  • Hilgetag CC, Barbas H (2009) Are there ten times more glia than neurons in the brain? Brain Struct Funct 213:365–366

    PubMed  Google Scholar 

  • Ihmann T, Liu J, Schwabe W et al (2004) High-level mRNA quantification of proliferation marker pKi-67 is correlated with favorable prognosis in colorectal carcinoma. J Cancer Res Clin Oncol 130:749–756

    PubMed  Google Scholar 

  • Institutional Animal Care and Use Committee (IACUC), Office of Research Compliance (ORC) (2013) Non-pharmaceutical and Pharmaceutical Grade Compounds in Research Animals available from https://research.iu.edu/doc/compliance/animal-care/bloomington/iub-biacuc-non-pharmaceutical-andpharmaceutical-grade-compounds-inresearch-animals.pdf. Accessed 15 June

  • Jaatinen P, Rintala J (2008) Mechanisms of ethanol-induced degeneration in the developing, mature, and aging cerebellum. The Cerebellum 7:332–347

    CAS  PubMed  Google Scholar 

  • Jangra A, Kwatra M, Singh T et al (2016) Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus. Eur J Pharmacol 791:51–61

    CAS  PubMed  Google Scholar 

  • Kamisli S, Ciftci O, Kaya K, Cetin A, Kamisli O, Ozcan C (2015) Hesperidin protects brain and sciatic nerve tissues against cisplatin-induced oxidative, histological and electromyographical side effects in rats. Toxicol Ind Health 31:841–851

    CAS  PubMed  Google Scholar 

  • Kandeil MA, Mahmoud MO, Abdel-Razik A-RH, Gomaa SB (2019) Thymoquinone and geraniol alleviate cisplatin-induced neurotoxicity in rats through downregulating the p38 MAPK/STAT-1 pathway and oxidative stress. Life Sci 228:145–151

    CAS  PubMed  Google Scholar 

  • Karbownik M, Lewinski A (2003) The role of oxidative stress in physiological and pathological processes in the thyroid gland; possible involvement in pineal-thyroid interactions. Neuro Endocrinol Lett 24:293–303

    CAS  PubMed  Google Scholar 

  • Kaufmann W, Bolon B, Bradley A et al (2012) Proliferative and nonproliferative lesions of the rat and mouse central and peripheral nervous systems. Toxicol Pathol 40:87S-157S

    PubMed  Google Scholar 

  • Kaya K, Ciftci O, Cetin A, Tecellioğlu M, Başak N (2016) Beneficial effects of β-glucan against cisplatin side effects on the nervous system in rats 1. Acta Cirurgica Brasileira 31:198–205

    PubMed  Google Scholar 

  • Kemp K, Redondo J, Hares K, Rice C, Scolding N, Wilkins A (2016) Oxidative injury in multiple sclerosis cerebellar grey matter. Brain Res 1642:452–460

    CAS  PubMed  Google Scholar 

  • Kim HJ, Lee JH, Kim SJ et al (2010) Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J Neurosci 30:3933–3946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleshcheva R (1988) The development of components of the blood-brain barrier in the neocortex of the white rat. Arkhiv Anatomii, Gistologii i Embriologii 95:22–26

    CAS  PubMed  Google Scholar 

  • Ko JW, Shin NR, Jung TY et al (2019) Melatonin attenuates cisplatin-induced acute kidney injury in rats via induction of anti-aging protein, Klotho. Food Chem Toxicol 129:201–210

    CAS  PubMed  Google Scholar 

  • Koohpeyma H, Goudarzi I, Elahdadi Salmani M, Lashkarbolouki T, Shabani M (2019) Postnatal administration of homocysteine induces cerebellar damage in rats: protective effect of folic acid. Neurotox Res 35:724–738

    CAS  PubMed  Google Scholar 

  • Koohpeyma H, Goudarzi I, Salmani ME, Lashkarbolouki T, Shabani M (2020) Folic acid protects rat cerebellum against oxidative damage caused by homocysteine: the expression of Bcl-2, Bax, and Caspase-3 apoptotic genes. Neurotox Res 37:564–577

    CAS  PubMed  Google Scholar 

  • Li Y, Zheng M, Sah SK, Mishra A, Singh Y (2019) Neuroprotective influence of sitagliptin against cisplatin-induced neurotoxicity, biochemical and behavioral alterations in Wistar rats. Mol Cell Biochem 455:91–97

    CAS  PubMed  Google Scholar 

  • Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4:288–314

    CAS  PubMed  Google Scholar 

  • Manohar S, Leung N (2018) Cisplatin nephrotoxicity: a review of the literature. J Nephrol 31:15–25

    CAS  PubMed  Google Scholar 

  • Miao L, Clair DKS (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radical Biol Med 47:344–356

    CAS  Google Scholar 

  • Migliore L, Coppedè F (2002) Genetic and environmental factors in cancer and neurodegenerative diseases. Mutation Res/rev Mutation Res 512:135–153

    CAS  Google Scholar 

  • Miller MA, Zachary JF 2016. Mechanisms and Morphology of Cellular Injury, Adaptation, and Death. In: Zachary JF, McGavin MD (eds.) Pathologic Basis of Veterinary Disease Expert Consult-E-Book. 6th ed.: Elsevier Health Sciences, ch:1, pp. 2–44.

    Google Scholar 

  • Moore DL, Jessberger S (2013) All astrocytes are not created equal—the role of astroglia in brain injury. EMBO Rep 14:487–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moser VC (2011) Functional assays for neurotoxicity testing. Toxicol Pathol 39:36–45

    PubMed  Google Scholar 

  • Muñoz-Castañeda R, Díaz D, Peris L et al (2018) Cytoskeleton stability is essential for the integrity of the cerebellum and its motor-and affective-related behaviors. Sci Rep 8:1–14

    Google Scholar 

  • Myers JS, Pierce J, Pazdernik T (2008) Neurotoxicology of chemotherapy in relation to cytokine release, the blood-brain barrier, and cognitive impairment. Oncol Nurs Forum 35:916–920

    PubMed  Google Scholar 

  • Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang K-C, Wegiel J (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674

    CAS  PubMed  Google Scholar 

  • Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338:668–676

    CAS  PubMed  Google Scholar 

  • Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    CAS  PubMed  Google Scholar 

  • Nkomozepi P, Mazengenya P, Ihunwo AO (2019) Age-related changes in Ki-67 and DCX expression in the BALB/c mouse (Mus Musculus) brain. Int J Dev Neurosci 72:36–47

    CAS  PubMed  Google Scholar 

  • O’Rourke B, Cortassa S, Aon MA (2005) Mitochondrial ion channels: gatekeepers of life and death. Physiology 20:303–315

    PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  PubMed  Google Scholar 

  • Owoeye O, Adedara IA, Farombi EO (2018) Pretreatment with taurine prevented brain injury and exploratory behaviour associated with administration of anticancer drug cisplatin in rats. Biomed Pharmacother 102:375–384

    CAS  PubMed  Google Scholar 

  • Oz M, Atalik KEN, Yerlikaya FH, Demir EA (2015) Curcumin alleviates cisplatin-induced learning and memory impairments. Neurobiol Learn Mem 123:43–49

    CAS  PubMed  Google Scholar 

  • Park SB, Goldstein D, Krishnan AV, et al (2013) Chemotherapy‐induced peripheral neurotoxicity: a critical analysis. CA: a cancer J clin 63(6):419–437

    Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30:11–26

    CAS  PubMed  Google Scholar 

  • Picut CA, Parker GA (2017) Postnatal organ development as a complicating factor in juvenile toxicity studies in rats. Toxicol Pathol 45:248–252

    CAS  PubMed  Google Scholar 

  • Pisu M, Roda E, Avella D, Bernocchi G (2004) Developmental plasticity of rat cerebellar cortex after cisplatin injury: inhibitory synapses and differentiating Purkinje neurons. Neuroscience 129:655–664

    CAS  PubMed  Google Scholar 

  • Pisu M, Roda E, Guioli S, Avella D, Bottone M, Bernocchi G (2005) Proliferation and migration of granule cells in the developing rat cerebellum: Cisplatin effects. Anat Record-Part Discov Mol Cell Evolut Biol 287:1226–1235

    Google Scholar 

  • Poljsak B, Šuput D, Milisav I (2013) Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013:956792–956792

    PubMed  PubMed Central  Google Scholar 

  • Pujadas L, Gruart A, Bosch C et al (2010) Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J Neurosci 30:4636–4649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmanzadeh R, Hüttmann G, Gerdes J, Scholzen T (2007) Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis. Cell Proliferation 40:422–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao AR, Quach H, Smith E, Vatassery GT, Rao R (2014) Changes in ascorbate, glutathione and α-tocopherol concentrations in the brain regions during normal development and moderate hypoglycemia in rats. Neurosci Lett 568:67–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizor A, Pajarillo E, Johnson J, Aschner M, Lee E (2019) Astrocytic oxidative/nitrosative stress contributes to Parkinson’s disease pathogenesis: the dual role of reactive astrocytes. Antioxidants 8:265

    CAS  PubMed Central  Google Scholar 

  • Salih N, Al-Baggou B (2019) Effect of memantine hydrochloride on cisplatin-induced neurobehavioral toxicity in mice. Acta Neurol Belg 120:71–82

    PubMed  Google Scholar 

  • Santos NAGd, Ferreira RS, Santos ACd (2020) Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol 136:111079

    PubMed  Google Scholar 

  • Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J cell physiol 182:311–322

    CAS  PubMed  Google Scholar 

  • Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    CAS  PubMed  Google Scholar 

  • Sen S, De B, Devanna N, Chakraborty R (2013) Cisplatin-induced nephrotoxicity in mice: protective role of Leea asiatica leaves. Ren Fail 35:1412–1417

    CAS  PubMed  Google Scholar 

  • Shabani M, Hosseinmardi N, Haghani M, Shaibani V, Janahmadi M (2011) Maternal exposure to the CB1 cannabinoid agonist WIN 55212–2 produces robust changes in motor function and intrinsic electrophysiological properties of cerebellar Purkinje neurons in rat offspring. Neuroscience 172:139–152

    CAS  PubMed  Google Scholar 

  • Shabani M, Larizadeh MH, Parsania S, Hajali V, Shojaei A (2012) Evaluation of destructive effects of exposure to cisplatin during developmental stage: no profound evidence for sex differences in impaired motor and memory performance. Int J Neurosci 122:439–448

    CAS  PubMed  Google Scholar 

  • Shiraishi RD, Miyashita S, Yamashita M et al (2019) Expression of transcription factors and signaling molecules in the cerebellar granule cell development. Gene Expr Patterns 34:119068

    CAS  PubMed  Google Scholar 

  • Shivakumar BR, Anandatheerthavarada HK, Ravindranath V (1991) Free radical scavenging systems in developing rat brain. Int J Dev Neurosci 9:181–185

    CAS  PubMed  Google Scholar 

  • Smith AM, Zeve DR, Grisel JJ, Chen W-JA (2005) Neonatal alcohol exposure increases malondialdehyde (MDA) and glutathione (GSH) levels in the developing cerebellum. Dev Brain Res 160:231–238

    CAS  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song TY, Chen CL, Liao JW, Ou HC, Tsai MS (2010) Ergothioneine protects against neuronal injury induced by cisplatin both in vitro and in vivo. Food Chem Toxicol 48:3492–3499

    CAS  PubMed  Google Scholar 

  • Stehlik-Barry K, Babinec AJ 2017. Comparing Means and ANOVA. In: Data Analysis with IBM SPSS Statistics, Packt Publishing Ltd., Ch:11, pp 229–265.

    Google Scholar 

  • Subramanian MV, James T (2010) Age-related protective effect of deprenyl on changes in the levels of diagnostic marker enzymes and antioxidant defense enzymes activities in cerebellar tissue in Wistar rats. Cell Stress Chaperones 15:743–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama A, Sun J, Ueda K, Furukawa S, Takeuchi T (2015) Effect of methotrexate on cerebellar development in infant rats. J Vet Med Sci 14:0475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tredici G, Tredici S, Fabbrica D, Minoia C, Cavaletti G (1998) Experimental cisplatin neuronopathy in rats and the effect of retinoic acid administration. J Neurooncol 36:31–40

    CAS  PubMed  Google Scholar 

  • Troudi A, Bouaziz H, Soudani N et al (2012) Neurotoxicity and oxidative stress induced by gibberellic acid in rats during late pregnancy and early postnatal periods: biochemical and histological changes. Exp Toxicol Pathol 64:583–590

    CAS  PubMed  Google Scholar 

  • Volpe JJ (2009) Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 24:1085–1104

    PubMed  PubMed Central  Google Scholar 

  • Wang SS-H, Kloth AD, Badura A (2014) The cerebellum, sensitive periods, and autism. Neuron 83:518–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wardill HR, Mander KA, Van Sebille YZ et al (2016) Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction. Int J Cancer 139:2635–2645

    CAS  PubMed  Google Scholar 

  • Westerga J, Gramsbergen A (1993) Development of locomotion in the rat: the significance of early movements. Early Human Dev 34:89–100

    CAS  Google Scholar 

  • Yamada K, Watanabe M (2002) Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int 77:94–108

    PubMed  Google Scholar 

  • Yamamoto H, Ozaki T, Nakanishi M et al (2007) Oxidative stress induces p53-dependent apoptosis in hepatoblastoma cell through its nuclear translocation. Genes Cells 12:461–471

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was not funded by any source.

Author information

Authors and Affiliations

Authors

Contributions

All authors made equal contributions to this study.

Corresponding author

Correspondence to Samar Mortada Mahmoud.

Ethics declarations

Conflict of interest

Concerning the research, writing, and/or publication of this paper, the author(s) state that there are no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtar, H.E.L., Hulail, M.A.E., Mahmoud, S.M. et al. Impact of cisplatin administration on cerebellar cortical structure and locomotor activity of infantile and juvenile albino rats: the role of oxidative stress. Anat Sci Int 97, 30–47 (2022). https://doi.org/10.1007/s12565-021-00624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-021-00624-9

Keywords

Navigation