Skip to main content
Log in

Cloning of the ANT gene and its expression profiles at different developmental stages and post-molting times in the ridgetail white prawn Exopalaemon carinicauda

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

To investigate the roles of the ANT gene, which codes for adenine nucleotide translocase (ANT) during crustacean development, a full-length cDNA sequence of EcANT in the ridgetail white prawn Exopalaemon carinicauda, was cloned, and its expression profile was analyzed at different developmental stages and post-molting times. The EcANT gene (GenBank accession number: KP892663) contained an open reading frame of 924 bp encoding a 307 amino acid protein with a theoretical size of about 33.42 kDa and a predicted isoelectric point of 9.77. Tissue expression analysis revealed that EcANT was mainly expressed in muscle and its expression level tended to increase with the developmental stages. In addition, the expression level of EcANT after molting increased following the lengthening of post-molting time. Our results suggest that EcANT is an important gene related to the growth and development of E. carinicauda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Santamaria M, Lanave C, Saccone C (2004) The evolution of the adenine nucleotide translocase family. Gene 333:51–59

    Article  CAS  PubMed  Google Scholar 

  2. Chevrollier A, Loiseau D, Reynier P, Stepien G (2011) Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochem Biophys Acta 1807:562–567

    CAS  PubMed  Google Scholar 

  3. Zhivotovsky B, Galluzzi L, Kepp O, Kroemer G (2009) Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. Cell Death Differ 16:1419–1425

    Article  CAS  PubMed  Google Scholar 

  4. Boya P, Roumier T, Andreau K, Gonzalez-Polo RA, Zamzami N, Castedo M (2003) Mitochondrion-targeted apoptosis regulators of viral origin. Biochem Bioph Res Co 304:575–581

    Article  CAS  Google Scholar 

  5. Brenner C, Subramaniam K, Pertuiset C, Pervaiz S (2011) Adenine nucleotide translocase family: four isoforms for apoptosis modulation in cancer. Oncogene 30:883–895

    Article  CAS  PubMed  Google Scholar 

  6. Lin X, Kim Y, Lee BL, Söderhäll K, Söderhäll I (2009) Identification and properties of a receptor for the invertebrate cytokine astakine, involved in hematopoiesis. Exp Cell Res 315:1171–1180

    Article  CAS  PubMed  Google Scholar 

  7. Ma FF, Chou ZG, Liu QH, Guan GK, Li C, Huang J (2014) White spot syndrome virus VP12 interacts with adenine nucleotide translocase of Litopenaeus vannamei. J Invertebr Pathol 118:28–33

    Article  CAS  PubMed  Google Scholar 

  8. Sun W, Zhou F, Huang J, Qiu L, Yang Q, Jiang S (2013) Molecular cloning and expression analysis of adenine nucleotide translocase (PmANT) in Penaeus monodon. J Shanghai Ocean Univ 22:7–16 (in Chinese with English abstract)

    CAS  Google Scholar 

  9. Holthuis LB (1980) Shrimps and prawns of the world: an annotated catalogue of species of interest to fisheries. FAO Fish Synop 125:271

    Google Scholar 

  10. Liang JP, Li J, Liu P, Li J, Chen P (2012) Research progress of biological characteristics and artificial breeding of ridgetail white prawn, Exopalaemon carinicauda. Chin Agr Sci Bul 28:109–116 (in Chinese with English abstract)

    CAS  Google Scholar 

  11. Xu W, Xie J, Shi H, Li C (2010) Hematodinium infections in cultured ridgetail white prawns, Exopalaemon carinicauda, in eastern China. Aquaculture 300:25–31

    Article  Google Scholar 

  12. Zhang C, Li F, Xiang J (2014) Effect of salinity on growth and first sexual maturity of Exopalaemon carinicauda (Holthuis 1950). Chin J Oceanol Limnol 32:65–70

    Article  CAS  Google Scholar 

  13. Zhang J, Wang J, Gui T, Sun Z, Xiang J (2014) A copper-induced metallothionein gene from Exopalaemon carinicauda and its response to heavy metal ions. Int J Biol Macromol 70:246–250

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Li F, Wang B, Xiang J (2013) A new shrimp peritrophin-like gene from Exopalaemon carinicauda involved in white spot syndrome virus (WSSV) infection. Fish Shellfish Immun 35:840–846

    Article  CAS  Google Scholar 

  15. Duan Y, Li J, Li J, Gao B, Chen P (2013) cDNA cloning, characterization and expression analysis of peroxiredoxin 5 gene in the ridgetail white prawn Exopalaemon carinicauda. Mol Biol Rep 40:6569–6577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li J, Han J, Chen P, Chang Z, He Y, Liu P, Wang Q, Li J (2012) Cloning of a heat shock protein 90 (HSP90) gene and expression analysis in the ridgetail white prawn Exopalaemon carinicauda. Fish Shellfish Immun 32:1191–1197

    Article  CAS  Google Scholar 

  17. Gao H, Li Z, Lai X, Xue B, Zhao L, Zhang P, Yan B, Cheng H, Pan Q (2016) A new heat shock protein 70 gene (HSC70) and its expression profiles in response to cadmium stress and after different post-molting times in Exopalaemon carinicauda (Holthuis 1950) (Decapoda, Palaemonidae). Crustaceana 89:321–336

    Article  Google Scholar 

  18. Ge QQ, Liang JP, Li JT, Li J, Duan YF, Zhao FZ, Ren H (2015) Molecular cloning and expression analysis of Relish gene from the ridgetail white prawn Exopalaemon carinicauda. Fisheries Sci 81:699–711

    Article  CAS  Google Scholar 

  19. Li Z, Zhang C, Li F, Xiang J (2014) Histological study on the gonadal development of Exopalaemon carinicauda (Holthuis 1950). J Fisher China 38:362–370 (in Chinese with English abstract)

    Google Scholar 

  20. Wang X (1989) Early embryonic development on Exopalaemon carinicauda (Holthuis) and relation of its incubation with temperature and salinity. J Fish China 13:59–64 (in Chinese with English abstract)

    Google Scholar 

  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  23. Stepien G, Torroni A, Chung AB, Hodge JA, Wallace DC (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267:14592–14597

    CAS  PubMed  Google Scholar 

  24. Yin Q, Cui L, Peng JX, Wei BY, Xie DX, Chen XL, Wang AW, Li K, Chen XH (2012) Molecular cloning of LvANT2 gene and its expression pattern by cold induction. Acta Hydrobiol Sin 36:24–28 (in Chinese with English abstract)

    CAS  Google Scholar 

  25. Kühl U, Ebermann L, Lassner D, Klingel K, Klumpe I, Winter J, Zeichhardt H, Schultheiss HP, Dörner A (2014) Adenine nucleotide translocase 1 expression affects enterovirus infection in human and murine hearts. Int J Cardiol 172:449–452

    Article  Google Scholar 

  26. Whiteley NM, El-haj AJ (1997) Regulation of muscle gene expression over the moult in crustacea. Comp Biochem Physiol B: Biochem Mol Biol 117:323–331

    Article  Google Scholar 

  27. Nagasawa H, Yang WJ, Shimizu H, Aida K, Tsutsumi H, Terauchi A, Sonobe H (1996) Isolation and amino acid sequence of a molting inhibiting hormone from the American crayfish, Procambarus clarkia. Biosci Biotech Bioch 60:554–556

    Article  CAS  Google Scholar 

  28. Pitts NL, Mykles DL (2017) Localization and expression of molt-inhibiting hormone and nitric oxide synthase in the central nervous system of the green shore crab, Carcinus maenas, and the blackback land crab, Gecarcinus lateralis. Comp Biochem Phys B 203:328–340

    Article  CAS  Google Scholar 

  29. Chang ES, Bruce MJ, Tamone SL (1993) Regulation of crustacean molting: a multihormonal system. Am Zool 33:324–329

    Article  CAS  Google Scholar 

  30. Chung JS, Zmora N, Katayama H, Tsutsui N (2010) Crustacean hyperglycemic hormone (CHH) neuropeptides family: functions, titer, and binding to target tissues. Gen Comp Endocr 166:447–454

    Article  CAS  PubMed  Google Scholar 

  31. Webster SG, Keller R, Dircksen H (2012) The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. Gen Comp Endocr 175:217–233

    Article  CAS  PubMed  Google Scholar 

  32. Chan SM, Gu PL, Chu KH, Tobe SS (2003) Crustacean neuropeptide genes of the CHH/MIH/GIH family: implications from molecular studies. Gen Comp Endocr 134:214–219

    Article  CAS  PubMed  Google Scholar 

  33. Webster S (1996) Measurement of crustacean hyperglycaemic hormone levels in the edible crab Cancer pagurus during emersion stress. J Exp Biol 199:1579–1585

    CAS  PubMed  Google Scholar 

  34. Chang ES, Keller R, Chang SA (1998) Quantification of crustacean hyperglycemic hormone by ELISA in hemolymph of the lobster, Homarus americanus, following various stresses. Gen Comp Endocr 111:359–366

    Article  CAS  PubMed  Google Scholar 

  35. Chung JS, Webster SG (2005) Dynamics of in vivo release of molt-inhibiting hormone and crustacean hyperglycemic hormone in the shore crab, Carcinus maenas. Endocrinology 146:5545–5551

    Article  CAS  PubMed  Google Scholar 

  36. Sedlmeier D, Keller R (1981) The mode of action of the crustacean neurosecretory hyperglycemic hormone. I. Involvement of cyclic nucleotides. Gen Comp Endocr 45:82–90

    Article  CAS  PubMed  Google Scholar 

  37. Chung JS, Webster SG (2006) Binding sites of crustacean hyperglycemic hormone and its second messengers on gills and hindgut of the green shore crab, Carcinus maenas: a possible osmoregulatory role. Gen Comp Endocr 147:206–213

    Article  CAS  PubMed  Google Scholar 

  38. Goy MF (1990) Activation of membrane guanylate cyclase by an invertebrate peptide hormone. J Biol Chem 265:20220–20227

    CAS  PubMed  Google Scholar 

  39. Chung JS, Dircksen H, Webster SG (1999) A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. P Natl Acad Sci USA 96:13103–13107

    Article  CAS  Google Scholar 

  40. Schwarz M, Andrade-Navarro MA, Gross A (2007) Mitochondrial carriers and pores: Key regulators of the mitochondrial apoptotic program? Apoptosis 12:869–876

    Article  CAS  PubMed  Google Scholar 

  41. Katayama H, Chung JS (2009) The specific binding sites of eyestalk- and pericardial organ-crustacean hyperglycemic hormones (CHHs) in multiple tissues of the blue crab, Callinectes sapidus. J Exp Biol 212:542–549

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Open-end Funds of Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology (2015HS001), the Qing Lan Project, “521 Project”for scientific research of Lianyungang City and Enterprise-university-research institute cooperation funds of Lianyungang City (CXY1517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Xue, B., Zhao, L. et al. Cloning of the ANT gene and its expression profiles at different developmental stages and post-molting times in the ridgetail white prawn Exopalaemon carinicauda . Fish Sci 83, 553–561 (2017). https://doi.org/10.1007/s12562-017-1094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-017-1094-0

Keywords

Navigation