Skip to main content
Log in

Metabolic and phylogenetic profiles of microbial communities from a mariculture base on the Chinese Guangdong coast

  • Original Article
  • Environment
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

This study examined the phylogenetic and metabolic features of microbial communities in Baisha Bay mariculture areas of Nan’ao Island, a mariculture base on the Chinese Guangdong coast. Large seaweed (Gracilaria lemaneiformis) cultivation zones (LZ), fish culture zones (FZ), and control zones (CZ) were sampled. According to community-level physiological profiling, d-mannitol, d-mannitol/α-d-lactose, and d-mannitol/α-cyclodextrin were the carbon sources with the highest utilization rates in CZ, LZ, and FZ, respectively (R s  > 1.9). Denaturing gradient gel electrophoresis analysis showed that the dominant bacteria in CZ and LZ were Alphaproteobacteria (39.9 and 34.5%, respectively), whereas in FZ they were Flavobacteria (32.2%). The Shannon diversity in CZ and LZ was significantly higher than in FZ (P < 0.05). Some opportunistic pathogens, such as Vibrio, Pseudoalteromonas and Loktanella, were abundant in FZ. The microbial communities and most of the dominant bacteria in FZ were more affected by environmental factors including salinity, chemical oxygen demand and total phosphorus. Some bacteria, such as Brevundimonas and Polaribater, have the potential to degrade agar in seaweed, and were isolated from samples rich in algae which are dominant in LZ. The cultivation of G. lemaneiformis created the notable structures and functions of macroalgae-associated bacterial communities that were less affected by the environmental factors examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang YF, Hou LC, Nie XP, Tang DL, Chung IK (2004) Development of mariculture and its impacts in Chinese coastal waters. Rev Fish Biol Fisher 14:1–10

    Article  Google Scholar 

  2. Hong WS, Zhang QY (2003) Review of captive bred species and fry production of marine fish in China. Aquaculture 227:305–318

    Article  Google Scholar 

  3. Li K, Liu LP, Clausen JH, Lu M, Dalsgaard A (2016) Management measures to control diseases reported by tilapia (Oreochromis spp.) and whiteleg shrimp (Litopenaeus vannamei) farmers in Guangdong, China. Aquaculture 457:91–99

    Article  CAS  Google Scholar 

  4. Zhang JH, Hansen PK, Fang JG (2009) Assessment of the local environmental impact of intensive marine shellfish and seaweed farming-Application of the MOM system in the Sungo Bay, China. Aquaculture 287:304–310

    Article  Google Scholar 

  5. Han QX, Wang YQ, Zhang Y, Keesing J, Liu DY (2013) Effects of intensive scallop mariculture on macrobenthic assemblages in Sishili Bay, the northern Yellow Sea of China. Hydrobiologia 718:1–15

    Article  Google Scholar 

  6. Wang YB, Xu ZR, Xia MS (2005) The effectiveness of commercial probiotics in northern white shrimp Penaeus vannamei ponds. Fish Sci 71:1036–1041

    Article  CAS  Google Scholar 

  7. Cao YC, Wen GL, Li ZJ, Liu XZ, Hu XJ, Zhang JS, He JG (2014) Effects of dominant microalgae species and bacterial quantity on shrimp production in the final culture season. J Appl Phycol 26:1749–1757

    Article  Google Scholar 

  8. Troll M, Hallling C, Nero A, Chopin T, Buschmann AH, Kautsky N, Yarish C (2003) Integrated mariculture: asking the right questions. Aquaculture 226:69–90

    Article  Google Scholar 

  9. Wu R (1995) The environmental impact of marine fish culture: towards a sustainable future. Mar Pollut Bull 31:159–166

    Article  CAS  Google Scholar 

  10. Yang YF, Chai ZY, Wang Q, Chen WZ, He ZL, Jiang SJ (2015) Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res 9:236–244

    Article  Google Scholar 

  11. Zodape ST (2001) Seaweeds as a biofertilizer. J Sci Ind Res 60:378–382

    Google Scholar 

  12. Gu YG, Yang YF, Lin Q, Li QS, Wang ZH, Wang X (2012) Spatial, temporal, and speciation variations of heavy metals in sediments of Nan’ao Island, a representative mariculture base in Guangdong coast, China. J Environ Monit 14:1943–1950

    Article  CAS  PubMed  Google Scholar 

  13. Lai XW, Chen WZ (2006) Progress and research on ecological mariculture in Nan’ao island. J Fish Sci Technol 2:33–34 (in Chinese)

    Google Scholar 

  14. Fei XG (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512:145–151

    Article  Google Scholar 

  15. Yang YF, Fei XG, Song JM, Hu HY, Wang GC, Chung IK (2006) Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture 254:248–255

    Article  Google Scholar 

  16. Schiff K, Luk B, Gregorio D, Gruber S (2011) Assessing water quality in Marine Protected Areas from Southern California, USA. Mar Pollut Bull 62:2780–2786

    Article  CAS  PubMed  Google Scholar 

  17. Wallace J, Stewart L, Hawdon A, Keen R, Karim F, Kemei J (2009) Flood water quality and marine sediment and nutrient loads from the Tully and Murray catchments in north Queensland, Australia. Mar Freshw Res 60:1123–1131

    Article  CAS  Google Scholar 

  18. Paerl H, Dyble J, Twomey L, Pinckney J, Nelson J, Kerkhof L (2002) Characterizing man-made and natural modifications of microbial diversity and activity in coastal ecosystems. Antonie Van Leeuwenhoek 81:487–507

    Article  CAS  PubMed  Google Scholar 

  19. González JM, Simó R, Massana R, Covert JS, Casamayor EO, Pedrós-Alió C, Moran MA (2000) Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microb 66:4237–4246

    Article  Google Scholar 

  20. Zhang DM, Wang X, Xiong JB, Zhu JL, Wang YN, Zhao QF, Chen HP, Guo AN, Wu JF, Dai HP (2014) Bacterioplankton assemblages as biological indicators of shrimp health status. Ecol Indic 38:218–224

    Article  CAS  Google Scholar 

  21. Yoza BA, Harada RM, Nihous GC, Li QX, Masytani SM (2007) Impact of mariculture on microbial diversity in sediments near open ocean farming of Polydactylus sexfilis. Ecol Indic 7:108–122

    Article  Google Scholar 

  22. Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl Environ Microb 65:3192–3204

    CAS  Google Scholar 

  23. Stevens H, Ulloa O (2008) Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol 10:1244–1259

    Article  CAS  PubMed  Google Scholar 

  24. Liu ZH, Huang SB, Sun GP, Xu ZC, Xu MY (2012) Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang River, China. FEMS Microbiol Ecol 80:30–44

    Article  CAS  PubMed  Google Scholar 

  25. Sekiguchi H, Koshikawa H, Hiroki M, Murakami S, Xu K, Watanabe M, Nakahara T, Zhu M, Uchiyama H (2002) Bacterial distribution and phylogenetic diversity in the Changjiang estuary before the construction of the Three Gorges Dam. Microb Ecol 43:82–91

    Article  CAS  PubMed  Google Scholar 

  26. Blancheton JP, Attramadal KJK, Michaud L, d’Orbcastel ER, Vadstein O (2013) Insight into bacterial population in aquaculture systems and its implication. Aquacult Eng 53:30–39

    Article  Google Scholar 

  27. Tamminen M, Karkman A, Corander J, Paulin L, Virta M (2011) Differences in bacterial community composition in Baltic Sea sediment in response to fish farming. Aquaculture 313:15–23

    Article  Google Scholar 

  28. Sakami T, Fujioka Y, Shimoda T (2008) Comparison of microbial community structures in intensive and extensive shrimp culture ponds and a mangrove area in Thailand. Fish Sci 74(4):889–898

    Article  CAS  Google Scholar 

  29. Kirk JL, Klironomos JN, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455–465

    Article  CAS  PubMed  Google Scholar 

  30. Lee EH, Kim J, Kim JY, Koo SY, Lee SD, Ko KS, Ko DC, Yum BY, Cho KS (2010) Comparison of microbial communities in petroleum-contaminated groundwater using genetic and metabolic profiles at Kyonggi-Do, South Korea. Environ Earth Sci 60:371–382

    Article  Google Scholar 

  31. GB/T 12763.4-2007 Specifications for oceanographic survey-Part 4: survey of chemical parameters in sea water, National Standards of the P.R.C. compositions. Biogeosciences. 7: 3343–3362 (in Chinese)

  32. APHA (American Public Health Association) (1998) Standard methods for the examination of water and waste water, 20th edn. Am Public Health Assoc, Washington, DC

    Google Scholar 

  33. Weber KP, Legge RL (2011) Dynamics in the bacterial community-level physiological profiles and hydrological characteristics of constructed wetland mesocosms during start-up. Ecol Eng 37:666–677

    Article  Google Scholar 

  34. Choi KH, Dobbs FC (1999) Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microbiol Methods 36:203–213

    Article  CAS  PubMed  Google Scholar 

  35. Khalil S, Alsanius BW (2009) Utilisation of carbon sources by Pythium, Phytophthora and Fusarium Species as determined by Biolog® microplate assay. Open Microbiol J 3:9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level, sole-carbon-source utilization. Appl Environ Microb 57:2351–2359

    CAS  Google Scholar 

  37. Xi JY, Hu HY, Jiang J, Qian Y (2005) Metabolic properties of the microbial community in the biofilters using biolog microplates. Environ Sci 26:165–170 (in Chinese with English abstract)

    CAS  Google Scholar 

  38. Yang YF, Hu XJ, Zhang J, Gong YX (2013) Community level physiological study of algicidal bacteria in the phycosphere of Skeletonema costatum and Scrippsiella trochoidea. Harmful Algae 28:88–96

    Article  Google Scholar 

  39. Muyzer G, De-Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Moss A, Bassall M (2006) Effects of disturbance on the biodiversity and abundance of isopods in temperature grasslands. Eur J Soil Biol 42:S254–S268

    Article  Google Scholar 

  41. Hu XJ, Liu Q, Li ZJ, He ZL, Gong YX, Cao YC, Yang YF (2014) Metabolic and phylogenetic profiles of microbial communities in Guishan Island of South China Sea. J Ocean Univ China 13:857–864

    Article  CAS  Google Scholar 

  42. TerBraak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  43. Kirchman DL, Meon B, Ducklow HW, Carlson CA, Hansell DA, Steward GF (2001) Glucose fluxes and concentrations of dissolved combined neutral sugars (polysaccharides) in the Ross Sea and Polar Front Zone, Antarctica. Deep Sea Res Part 2 Top Stud Oceanogr 48:4179–4197

    Article  CAS  Google Scholar 

  44. Hernes PJ, Hedges JI, Peterson ML, Wakeham SG, Lee C (1996) Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific. Deep Sea Res Part Top Stud Oceanogr 43:1181–1204

    Article  CAS  Google Scholar 

  45. He B, Dai M, Huang W, Liu Q, Chen H, Xu L (2010) Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions. Biogeosciences 7:3343–3362

    Article  CAS  Google Scholar 

  46. Rohani-Ghadikolaei K, Abdulalian E, Ng W-K (2012) Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J Food Sci Technol 49(6):774–780

    Article  CAS  PubMed  Google Scholar 

  47. Groisillier A, Labourel A, Michel G, Tonon T (2015) The mannitol utilization system of the marine bacterium Zobellia galactanivorans. Appl Environ Microbiol 81(5):1790–1803

    Article  Google Scholar 

  48. Lu KG, Wei L, Liu JG (2008) The characteristics of nutrient removal and inhibitory effect of Ulva clathrata on Vibrio anguillarum 65. J Appl Phycol 20:1061–1068

    Article  Google Scholar 

  49. Fandino LB, Riemann L, Steward GF, Long RA, Azam F (2001) Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat Microb Ecol 23:119–130

    Article  Google Scholar 

  50. Wada M, Mori F, Yokouchi K, Yagi M, Takita T, Ishimatsu A, Iwataki M, Takahashi K, Van Mai H, Thanh Vo T, Phuoc Ha H, Dac Tran D (2016) Comparison of planktonic microbial abundance and dissolved oxygen consumption between the aquaculture ponds of mudskippers and shrimps in the Mekong Delta, southern Vietnam. Fish Sci 82(5):787–797

    Article  CAS  Google Scholar 

  51. Bonilla-Findji O, Herndl GJ, Gattuso JP, Weinbauer MG (2009) Viral and flagellate control of prokaryotic production and community structure in offshore Mediterranean waters. Appl Environ Microb 75:4801–4812

    Article  CAS  Google Scholar 

  52. Balcázar JL, Lee NM, Pintado J, Planas M (2010) Phylogenetic characterization and in situ detection of bacterial communities associated with seahorses (Hippocampus guttulatus) in captivity. Syst Appl Microbiol 33:71–77

    Article  PubMed  Google Scholar 

  53. Planas M, Pérez-Lorenzo M, Hjelm M, Gram L, Fiksdal IU, Bergh Ø, Pintado J (2006) Probiotic effect in vivo of Roseobacter strain 27-4 against Vibrio (Listonella) anguillarum infections in turbot (Scophthalmus maximus L.) larvae. Aquaculture 255:323–333

    Article  Google Scholar 

  54. Li SQ, Pan JL, Li ZH, Liu XL, Tan J, Yang H (2014) Characterization of an algicidal bacterium Brevundimonas J4 and chemical defense of Synechococcus sp. BN60 against bacterium J4. Harmful Algae 37:1–7

    Article  Google Scholar 

  55. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H, Yano Y, Satomi M (2013) Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species. Int J Syst Evol Microbiol 63:1665–1672

    Article  CAS  PubMed  Google Scholar 

  56. She BJ, Tao XQ, Huang T, Lu GN, Zhou ZL, Guo CL, Dang Z (2016) Effects of nano bamboo charcoal on PAHs-degrading strain Sphingomonas sp. GY2B. Ecotox Environ Safe 125:35–42

    Article  CAS  Google Scholar 

  57. Austin B, Zhang XH (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43:119–124

    Article  CAS  PubMed  Google Scholar 

  58. Hubbard TP, Chao MC, Abel S, Blondel CJ, Abel Zur Wiesch P, Zhou X, Davis BM, Waldor MK (2016) Genetic analysis of Vibrio parahaemolyticus intestinal colonization. Proc Natl Acad Sci USA 113(22):6283–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choudhury JD, Pramanik A, Webster NS, Llewellyn LE, Gachhui R, Mukherjee J (2015) The pathogen of the great barrier reef sponge Rhopaloeides odorabile is a new strain of Pseudoalteromonas agarivorans containing abundant and diverse virulence-related genes. Mar Biotechnol 17:463–478

    Article  CAS  PubMed  Google Scholar 

  60. Mancuso FP, D’hondt S, Willems A, Airoldi v, De Clerck O (2016) Diversity and Temporal Dynamics of the Epiphytic Bacterial Communities Associated with the Canopy-Forming Seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front Microbial 7:476

    Google Scholar 

  61. Liu JJ, Chen QZ, Zeng JN, Gao AG, Liao YB (2006) Studies on the ecology of microorganisms in maricultural areas. J Zhejiang Ocean Univ (Natural Sci) 25:72–77 (in Chinese with English abstract)

    CAS  Google Scholar 

  62. Nero A, Chopin T, Troll M, Buschmann AH, Kraemer P, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361–391

    Article  Google Scholar 

  63. Pang SJ, Xiao T, Bao Y (2006) Dynamic changes of total bacteria and Vibrio in an integrated seaweed-abalone culture system. Aquaculture 252:289–297

    Article  Google Scholar 

  64. Skriptsova AV, Miroshnikova NV (2011) Laboratory experiment to determine the potential of two macroalgae from the Russian Far-East as biofilters for integrated multi-trophic aquaculture (IMTA). Bioresour Technol 102:3149–3154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Joint Project of the Nature Science Foundation of China-Guangdong (U1301235), the Chinese Special Fund for Agro-scientific Research in the Public Interest (201403008), the Fund of the Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, the Ministry of Agriculture, P. R. China (FREU2015-08), and the Natural Science Foundation of Hainan Province (20163148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Yang.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Wen, G., Cao, Y. et al. Metabolic and phylogenetic profiles of microbial communities from a mariculture base on the Chinese Guangdong coast. Fish Sci 83, 465–477 (2017). https://doi.org/10.1007/s12562-017-1073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-017-1073-5

Keywords

Navigation