Skip to main content
Log in

Production of an antibacterial substance by Bacillus mojavensis strain F412 isolated from a Myanmar shrimp product fermented with boiled rice

  • Original Article
  • Food Science and Technology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

An antibacterial-substance-producing bacterium, namely, strain F412, was isolated from a traditional Myanmar shrimp product fermented with boiled rice. It was a gram-positive, spore-forming, and rod-shaped bacterium, and identified as Bacillus mojavensis on the basis of the gyrA sequence. The antibacterial substance of this strain was partially purified from a culture supernatant using two steps of column chromatography. This substance was found to be widely effective against gram-positive bacteria, including Listeria monocytogenes. The antibacterial activity of this substance was not susceptible to treatments with several proteolytic enzymes. The antibacterial activity gradually decreased with increasing treatment temperature, but it remained even after heating for 15 min at 121 °C. This antibacterial substance showed different molecular weights, as shown by the results of gel filtration and electrophoresis analyses. Staining results after electrophoresis suggest that the antibacterial substance might be a glycopeptide with an estimated molecular weight between 3.5 and 8.5 kDa. From the decrease in optical density of a culture of the L. monocytogenes treated with this antibacterial substance, it was suggested that this substance might have bacteriolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Cont 46:412–429

    Article  CAS  Google Scholar 

  2. Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M (2002) Food spoilage–interactions between food spoilage bacteria. Int J Food Microbiol 78:79–97

    Article  PubMed  Google Scholar 

  3. Balciunas EM, Martinez FAC, Todorov SD, de Melo Franco BDG, Converti A, de Souza Oliveira RP (2013) Novel biotechnological applications of bacteriocins: a review. Food Cont 32:134–142

    Article  CAS  Google Scholar 

  4. Jamuna M, Jeevaratnam K (2004) Isolation and characterization of lactobacilli from some traditional fermented foods and evaluation of the bacteriocins. J Gen Appl Microbiol 50:79–90

    Article  CAS  PubMed  Google Scholar 

  5. Smid EJ, Gorris LG (1999) Natural antimicrobials for food preservation. In: Rahman MS (ed) Handbook of food preservation. Marcel Dekker, New York, pp 285–308

    Google Scholar 

  6. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  PubMed  Google Scholar 

  7. Østergaard A, Embarek PB, Wedell-Neergaard C, Huss HH, Gram L (1998) Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products. Food Microbiol 15:223–233

    Article  Google Scholar 

  8. Wilaipun P, Zendo T, Okuda K, Nakayama J, Sonomoto K (2008) Identification of the nukacin KQU-131, a new type-A(II) lantibiotic produced by Staphylococcus hominis KQU-131 isolated from Thai fermented fish product (Pla-ra). Biosci Biotechnol Biochem 72:2232–2235

    Article  CAS  PubMed  Google Scholar 

  9. Wilaipun P, Zendo T, Sangjindavong M, Nitisinprasert S, Leelawatcharamas V, Nakayama J, Sonomoto K (2004) The two-synergistic peptide bacteriocin produced by Enterococcus faecium NKR-5-3 isolated from Thai fermented fish (pla-ra). Sci Asia 30:115–122

    Article  CAS  Google Scholar 

  10. Ishibashi N, Himeno K, Fujita K, Masuda Y, Perez RH, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K (2012) Purification and characterization of multiple bacteriocins and an inducing peptide produced by Enterococcus faecium NKR-5-3 from Thai fermented fish. Biosci Biotechnol Biochem 76:947–953

    Article  CAS  PubMed  Google Scholar 

  11. Srionnual S, Yanagida F, Lin LH, Hsiao KN, Chen YS (2007) Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from plaa-som, a fermented fish product from Thailand. Appl Environ Microbiol 73:2247–2250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kaewklom S, Lumlert S, Kraikul W, Aunpad R (2013) Control of Listeria monocytogenes on sliced bologna sausage using a novel bacteriocin, amysin, produced by Bacillus amyloliquefaciens isolated from Thai shrimp paste (Kapi). Food Control 32:552–557

    Article  CAS  Google Scholar 

  13. Ishige N (1993) Cultural aspects of fermented fish products in Asia. In: Lee CH et al (eds) Fish fermentation technology. United Nations University Press, Tokyo, pp 13–32

    Google Scholar 

  14. Tanasupawat S, Visessanguan W (2014) Fish fermentation. In: Boziaris IS (ed) Seafood processing: technology, quality and safety. Wiley Blackwell, UK, pp 177–207

    Google Scholar 

  15. Aung W, Tanaka Y, Zheng Z, Watanabe Y, Hashinaga F (2004) A bacterial strain with antibacterial and antioxidant activities from tasae, a Burmese indigenous alcohol starter. Food Sci Tech Res 10:346–349

    Article  CAS  Google Scholar 

  16. Lee JH, Kim TW, Lee H, Chang HC, Kim HY (2010) Determination of microbial diversity in meju, fermented cooked soya beans, using nested PCR-denaturing gradient gel electrophoresis. Lett Appl Microbiol 51:388–394

    Article  CAS  PubMed  Google Scholar 

  17. Chun J, Bae KS (2000) Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek 78:123–127

    Article  CAS  PubMed  Google Scholar 

  18. Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  20. Schägger H, Von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  21. Phromraksa P, Nagano H, Kanamaru Y, Izumi H, Yamada C, Khamboonruang C (2009) Characterization of Bacillus subtilis isolated from Asian fermented foods. Food Sci Tech Res 15:659–666

    Article  CAS  Google Scholar 

  22. Moore SJ, Mayer M, Biedendieck R, Deery E, Warren MJ (2014) Towards a cell factory for vitamin B12 production in Bacillus megaterium: bypassing of the cobalamin riboswitch control elements. New Biotech 31:553–561

    Article  CAS  Google Scholar 

  23. Abriouel H, Franz CM, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    Article  CAS  PubMed  Google Scholar 

  24. Apetroaie-Constantin C, Mikkola R, Andersson MA, Teplova V, Suominen I, Johansson T, Salkinoja-Salonen M (2009) Bacillus subtilis and B. mojavensis strains connected to food poisoning produce the heat stable toxin amylosin. J Appl Microbiol 106:1976–1985

    Article  CAS  PubMed  Google Scholar 

  25. Logan NA (2012) Bacillus and relatives in foodborne illness. J Appl Microbiol 112:417–429

    Article  CAS  PubMed  Google Scholar 

  26. Andreoletti O, Bukda H, Buncic S (2008) Scientific opinion of the panel on biological hazards on a request from EFSA on the maintenance of the list of QPS microorganisms intentionally added to food or feed. EFSA J923:1–48

    Google Scholar 

  27. Fikes JD, Crabtree BL, Barridge BD (1983) Studies on the mode of action of a bacteriocin produced by Bacillus stearothermophilus. Can J Microbiol 29:1576–1582

    Article  CAS  PubMed  Google Scholar 

  28. Paik SH, Chakicherla A, Hansen JN (1998) Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273:23134–23142

    Article  CAS  PubMed  Google Scholar 

  29. Oman TJ, Boettcher JM, Wang H, Okalibe XN, van der Donk WA (2011) Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat Chem Biol 7:78–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kelly WJ, Asmundson RV, Huang CM (1996) Characterization of plantaricin KW30, a bacteriocin produced by Lactobacillus plantarum. J Appl Bacteriol 81:657–662

    CAS  Google Scholar 

  31. Stepper J, Shastri S, Loo TS, Preston JC, Novak P, Man P, Moore CH, HavliíčekV, Patchett ML, Norris GE (2011) Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Lett 585:645–650

Download references

Acknowledgments

This study was supported by the Japanese Government (MONBUKAGAKUSHO) Scholarship program. The authors are grateful to Y. Watabe in our laboratory for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moe, N.K.T., Thwe, S.M., Suzuki, K. et al. Production of an antibacterial substance by Bacillus mojavensis strain F412 isolated from a Myanmar shrimp product fermented with boiled rice. Fish Sci 81, 795–802 (2015). https://doi.org/10.1007/s12562-015-0878-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-015-0878-3

Keywords

Navigation