Skip to main content

Advertisement

Log in

A Joint Modeling Approach for Longitudinal Data with Informative Observation Times and a Terminal Event

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

In this article, we propose a new joint modeling approach for the analysis of longitudinal data with informative observation times and a dependent terminal event. We specify a semiparametric mixed effects model for the longitudinal process, a proportional rate frailty model for the observation process, and a proportional hazards frailty model for the terminal event. The association among the three related processes is modeled via two latent variables. Estimating equation approaches are developed for parameter estimation, and the asymptotic properties of the proposed estimators are established. The finite sample performance of the proposed estimators is examined through simulation studies, and an application to a medical cost study of chronic heart failure patients is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cai N, Lu W, Zhang H (2012) Time-varying latent effect model for longitudinal data with informative observation times. Biometrics 68:1093–1102

    Article  MathSciNet  Google Scholar 

  2. Kalbfleisch J, Prentice R (2002) The statistical analysis of failure time data, 2nd edn. Wiley, New York

    Book  Google Scholar 

  3. Kalbfleisch J, Schaubel D, Ye Y, Gong Q (2013) An estimating function approach to the analysis of recurrent and terminal events. Biometrics 69:366–374

    Article  MathSciNet  Google Scholar 

  4. Liang K, Zeger S (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  MathSciNet  Google Scholar 

  5. Liang Y, Lu W, Ying Z (2009) Joint modeling and analysis of longitudinal data with informative observation times. Biometrics 65:377–384

    Article  MathSciNet  Google Scholar 

  6. Lin DY, Wei LJ, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate function of recurrent events. J R Stat Soc Ser B 69:711–730

    Article  MathSciNet  Google Scholar 

  7. Lin DY, Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81:61–71

    Article  MathSciNet  Google Scholar 

  8. Lin DY, Ying Z (2001) Semiparametric and nonparametric regression analysis of longitudinal data. J Am Stat Assoc 96:103–126

    Article  MathSciNet  Google Scholar 

  9. Lin H, Scharfstein D, Rosenheck D (2004) Analysis of longitudinal data with irregular outcome-dependent follow-up. J R Stat Soc Ser B 66:791–813

    Article  MathSciNet  Google Scholar 

  10. Liu L, Huang X, O’Quigley J (2008) Analysis of longitudinal data in the presence of informative observational times and a dependent terminal event, with application to medical cost data. Biometrics 64:950–958

    Article  MathSciNet  Google Scholar 

  11. Liu L, Wolfe R, Kalfleisch J (2007) A shared random effects model for censored medical costs and mortality. Stat Med 26:139–155

    Article  MathSciNet  Google Scholar 

  12. Pollard D (1990) Empirical processes: theory and applications. Institute of Mathematical Statistics, Hayward

    MATH  Google Scholar 

  13. Ryu D, Sinha D, Mallick B, Lipsitz S, Lipshultz S (2007) Longitudinal studies with outcome-dependent follow-up: models and Bayesian regression. J Am Stat Assoc 102:952–961

    Article  MathSciNet  Google Scholar 

  14. Song X, Mu X, Sun L (2012) Regression analysis of longitudinal data with time-dependent covariates and informative observation times. Scand J Stat 39:248–258

    Article  MathSciNet  Google Scholar 

  15. Sun J, Park D-H, Sun L, Zhao X (2005) Semiparametric regression analysis of longitudinal data with informative observation times. J Am Stat Assoc 100:882–889

    Article  MathSciNet  Google Scholar 

  16. Sun J, Sun L, Liu D (2007) Regression analysis of longitudinal data in the presence of informative observation and censoring times. J Am Stat Assoc 102:1397–1406

    Article  MathSciNet  Google Scholar 

  17. Sun L, Song X, Zhou J, Liu L (2012) Joint analysis of longitudinal data with informative observation times and a dependent terminal event. J Am Stat Assoc 107:688–700

    Article  MathSciNet  Google Scholar 

  18. Wang J-L, Wang W (2001) Discussion on “Semiparametric and nonparametric regression analysis of longitudinal data” by D. Y. Lin and Z. Ying. J Am Stat Assoc 96:119–123

  19. Ye Y, Kalbfleisch J, Schaubel D (2007) Semiparametric analysis of correlated recurrent and terminal events. Biometrics 63:78–87

    Article  MathSciNet  Google Scholar 

  20. Zhao X, Tong X, Sun L (2012) Joint analysis of longitudinal data with dependent observation times. Stat Sin 22:317–336

    MathSciNet  MATH  Google Scholar 

  21. Zeng D, Chen Q, Ibrahim JG (2009) Gamma frailty transformation models for multivariate survival times. Biometrika 96:277–291

    Article  MathSciNet  Google Scholar 

  22. Zhou J, Zhao X, Sun L (2013) A new inference approach for joint models of longitudinal data with informative observation and censoring times. Stat Sin 23:571–593

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief, Professor Mei-Cheng Wang, an Associate Editor and two referees for their constructive and insightful comments and suggestions that greatly improved the article. This research was supported by GRF 14305014 from the Research Grant Council of the Hong Kong Special Administration Region, Direct Grants from the Chinese University of Hong Kong, the National Natural Science Foundation of China (Grant Nos. 11771431 and 11690015) and Key Laboratory of RCSDS, CAS (No. 2008DP173182), and the Fundamental Research Funds for the Central Universities (Grant No. 20205170465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuquan Sun.

Appendices

Appendix : Proof of Asymptotic Results

In order to study the asymptotic properties of the proposed estimators, we need the following regularity conditions:

  1. (C1)

    \(\{Y_i(\cdot ), N_i^R(\cdot ), N_i^D(\cdot ), T_i, X_i(\cdot ),\ i=1,\ldots , n\}\) are independent and identically distributed.

  2. (C2)

    \(E\{N_i^R(\tau )\}\) is bounded, and \(\Pr (T_i \ge \tau )>0\).

  3. (C3)

    \(X_i(t)\) is almost surely of bounded variation on \([0, \tau ]\).

  4. (C4)

    There exist a compact set \(\mathcal {B}\) of \(\xi _0\) such that for \(\xi \in \mathcal {B}\), \(\Gamma (\xi )\) is nonsingular, where \(\Gamma (\xi )\) is the limit of \(-\partial \tilde{U}(\xi )/\partial \xi ^T\) with \(\tilde{U}(\xi )\) defined in (A.3).

For notational simplicity, henceforth we omit superscript t in the covariate \(X_i(t).\) Let \(\tilde{\Lambda }_0^D(t)\) and \(\tilde{\Lambda }_0^R(t)\) denote the solutions to the following estimating equations

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^n\Big [\psi _i(t; \alpha _0, \theta _0, \Lambda _0^D)\mathrm{{d}}N_i^D(t)-\Delta _i(t)\exp \{\alpha _0^TX_i\}\mathrm{{d}}\Lambda _0^D(t)\Big ]=0, \end{aligned}$$

and

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^n\Big [\psi _i(t; \alpha _0, \theta _0, \Lambda _0^D)\mathrm{{d}}N_i^R(t)-\Delta _i(t)\exp \{\beta _0^TX_i\}\mathrm{{d}}\Lambda _0^R(t)\Big ]=0. \end{aligned}$$

Proof of Theorem 1

Define

$$\begin{aligned} \tilde{\Psi }_1(t)=\frac{\theta _0}{n}\sum _{i=1}^n\int _0^t \exp \{\alpha _0^TX_i\}\frac{\mathrm{{d}}N_i^D(u)}{S_0(u;\alpha _0)}, \end{aligned}$$

where \(S_0(t; \alpha )=\frac{1}{n}\sum _{i=1}^n\Delta _i(t)\exp \{\alpha ^TX_i\}.\) By the definition of \(\tilde{\Lambda }_0^D(t),\) it can be checked that

$$\begin{aligned} \tilde{\Lambda }_0^D(t)-\Lambda _0^D(t) =\sum _{i=1}^n\int _0^t [\tilde{\Lambda }_0^D(u)-\Lambda _0^D(u)]d \tilde{\Psi }_1(u) +\frac{1}{n} \sum _{i=1}^n \int _0^t \frac{\mathrm{{d}} {M}_i^D(u)}{S_0(u;\alpha _0)}, \end{aligned}$$

which is a linear Volterra integral equation, and the solution is

$$\begin{aligned} \tilde{\Lambda }_0^D(t)-\Lambda _0^D(t)=\frac{1}{\tilde{P}(t)} \int _0^t \tilde{P}(u-) \frac{\sum _{i=1}^n \mathrm{{d}}{M}_i^D(u)}{nS_0(u;\alpha _0)}, \end{aligned}$$

where \(\tilde{P}(t)=\prod _{s\le t} \{1- d \tilde{\Psi }_1(s)\}\) is the product-integral of \(\tilde{\Psi }_1(s)\) over [0, t]. Using the uniform convergence of \(\tilde{\Lambda }_0^D(t),\) the uniform strong law of large numbers [12] and Lemma A.1 of Lin and Ying [8], we get that uniformly in \(t \in [0, \tau ],\)

$$\begin{aligned} \tilde{\Lambda }_0^D(t)-\Lambda _0^D(t)=\frac{1}{n}\sum _{i=1}^n \phi _{1i}(t)+o_p\left( n^{-1/2}\right) , \end{aligned}$$
(A.1)

where

$$\begin{aligned} \phi _{1i}(t)=\frac{1}{P(t)}\int _0^t P(u-)\frac{\mathrm{{d}} {M}_i^D(u)}{s_0(u;\alpha _0)}, \end{aligned}$$

and P(t) and \(s_0(t;\alpha )\) are the limits of \(\tilde{P}(t)\) and \(S_0(t;\alpha )\), respectively. Let

$$\begin{aligned} \tilde{\Psi }_2(t)=\frac{\theta _0}{n}\sum _{i=1}^n\int _0^t \exp \{\beta _0^TX_i\}\frac{\mathrm{{d}}N_i^R(u)}{S_0(u;\beta _0)}, \end{aligned}$$

and \(\Psi _2(t)\) be the limit of \(\tilde{\Psi }_2(t).\) Note that

$$\begin{aligned} \tilde{\Lambda }_0^R(t)=\frac{1}{n}\sum _{i=1}^n \int _0^t \frac{\psi _i(u; \tilde{\Lambda }_0^D)\mathrm{{d}}N_i^R(u)}{S_0(u;\beta _0)}, \end{aligned}$$

where \(\psi _i(t;\Lambda _0^D)=\psi _i(t;\alpha _0, \theta _0, \Lambda _0^D).\) It then follows from (A.1) that

$$\begin{aligned} \tilde{\Lambda }_0^R(t)-\Lambda _0^R(t)&=\int _0^t [\tilde{\Lambda }_0^D(u)-\Lambda _0^D(u)]\mathrm{{d}} \tilde{\Psi }_2(u) +\frac{1}{n}\sum _{i=1}^n \int _0^t \frac{\mathrm{{d}} {M}_i^R(u)}{S_0(u;\beta _0)}\nonumber \\&=\frac{1}{n}\sum _{i=1}^n \phi _{2i}(t)+o_p(n^{-1/2}), \end{aligned}$$
(A.2)

where

$$\begin{aligned} \phi _{2i}(t)= \int _0^t \phi _{1i}(u) d \Psi _2(u) + \int _0^t \frac{\mathrm{{d}}{M}_i^R(u)}{s_0(u)}. \end{aligned}$$

Let \(\omega _{2i}(t; \xi )\) be defined as \(\omega _{2i}(t)\) with \(\psi _i(t)\) replaced by \(\psi _i(t;\alpha , \theta , \tilde{\Lambda }_0^D),\) and

$$\begin{aligned} \tilde{U}(\xi ) = \big (\tilde{U}_1(\xi )^T, \tilde{U}_2(\xi )^T, \tilde{U}_3(\xi ), \tilde{U}_4(\xi )^T\big )^T, \end{aligned}$$
(A.3)

where

$$\begin{aligned} \tilde{U}_1(\xi )&=\sum _{i=1}^n \int _0^\tau \left\{ X_i-\bar{X}(t; \alpha )\right\} \psi _i(t; \alpha , \theta , \tilde{\Lambda }_0^D)\mathrm{{d}}N_i^D(t),\\ \tilde{U}_2(\xi )&=\sum _{i=1}^n \int _0^\tau \left\{ X_i-\bar{X}(t; \beta )\right\} \psi _i(t;\alpha , \theta , \tilde{\Lambda }_0^D)\mathrm{{d}}N_i^R(t),\\ \tilde{U}_3(\xi )&=\sum _{i=1}^n\int _0^\tau \big \{N_i^R(t)-(\theta +1)Q(t)\omega _{2i}(t; \xi )\big \}\mathrm{{d}}N_i^D(t) \end{aligned}$$

and

$$\begin{aligned} \tilde{U}_4(\xi )&=\sum _{i=1}^n\int _0^\tau \begin{pmatrix}{\begin{matrix}X_i-\bar{X}(t;\beta )\\ \\ B_i(t; \tilde{\Lambda }_0^D)-{\tilde{B}}(t; \xi ) \end{matrix}}\end{pmatrix} \Big [Y_i(t)\psi _i(t; \alpha , \theta , \tilde{\Lambda }_0^D)\mathrm{{d}}N_i^R(t)\\&\quad -\big \{\gamma ^TX_i+\eta ^T B_i(t; \tilde{\Lambda }_0^D)\big \} \exp \{\beta ^TX_i\}\mathrm{{d}}\tilde{\Lambda }_0^R(t)\Big ], \end{aligned}$$

with \(B_i(t; \tilde{\Lambda }_0^D)=B_i(t; \alpha , \theta , \tilde{\Lambda }_0^D),\) and

$$\begin{aligned} \tilde{B}(t; \xi )=\frac{\sum _{j=1}^n\Delta _j(t) B_j(t; \tilde{\Lambda }_0^D)\exp \{\beta ^TX_j\}}{\sum _{j=1}^n\Delta _j(t)\exp \{\beta ^TX_j\}}. \end{aligned}$$

Note that

$$\begin{aligned} \tilde{U}_1(\xi _0)&=\sum _{i=1}^n \int _0^\tau \left\{ X_i-\bar{X}(t; \alpha _0)\right\} \psi _i(t;\tilde{\Lambda }_0^D)\mathrm{{d}}N_i^R(t)\\&=\theta _0\sum _{i=1}^n \int _0^\tau \Delta _i(t)\exp \{\alpha _0^TX_i\}\big \{X_i-\bar{X}(t; \alpha _0)\big \} \big \{\tilde{\Lambda }_0^D(t)-\Lambda _0^D(t)\big \}\mathrm{{d}}N_i^D(t)\\&\quad +\sum _{i=1}^n \int _0^\tau \left\{ X_i-\bar{X}(t; \alpha _0)\right\} \mathrm{{d}}M_i^D(t), \end{aligned}$$

where \(\psi _i(t; \tilde{\Lambda }_0^D)=\psi _i(t;\alpha _0, \theta _0, \tilde{\Lambda }_0^D).\) Let

$$\begin{aligned} \tilde{H}_1(t)=\frac{1}{n}\sum _{i=1}^n \int _0^t \theta _0 \Delta _i(u)\exp \{\alpha _0^TX_i\}\big \{X_i-\bar{X}(u; \alpha _0)\big \}\mathrm{{d}}N_i^D(u), \end{aligned}$$

and \(\bar{x}(t;\alpha _0)\) and \(H_1(t)\) are the limits of \(\bar{X}(t; \alpha _0)\) and \(\tilde{H}_1(t),\) respectively. Similarly to (A.2), we have

$$\begin{aligned} \tilde{U}_1(\xi _0)=\sum _{i=1}^n \vartheta _{1i}+o_p\left( n^{1/2}\right) , \end{aligned}$$
(A.4)

where

$$\begin{aligned} \vartheta _{1i}= \int _0^\tau \left\{ X_i-\bar{x}(t;\alpha _0)\right\} \mathrm{{d}}M_i^D(t) +\int _0^\tau \phi _{1i}(t)\mathrm{{d}}H_1(t). \end{aligned}$$

Likewise,

$$\begin{aligned} \tilde{U}_2(\xi _0)=\sum _{i=1}^n \vartheta _{2i}+o_p(n^{1/2}), \end{aligned}$$
(A.5)

where

$$\begin{aligned} \vartheta _{2i}= \int _0^\tau \left\{ X_i-\bar{x}(t;\beta _0)\right\} d M_i^R(t) +\int _0^\tau \phi _{1i}(t)\mathrm{{d}}H_2(t), \end{aligned}$$

and \(\bar{x}(t;\beta _0)\) and \(H_2(t)\) are the limits of \(\bar{X}(t;\beta _0)\) and \(\tilde{H}_2(t)\) with

$$\begin{aligned} \tilde{H}_2(t)=\frac{1}{n}\sum _{i=1}^n \int _0^t \theta _0 \Delta _i(u)\exp \{\alpha _0^TX_i\}\big \{X_i-\bar{X}(u; \beta _0)\big \} \mathrm{{d}}N_i^R(u). \end{aligned}$$

Let

$$\begin{aligned} \omega _{2i}^*(t)&= \psi _i^{-1}(t; \Lambda _0^D) \int _0^t \exp \{\beta _0^TX_i\}\mathrm{{d}}\Lambda _0^R(u),\\ \tilde{\omega }_{2i}(t)&= \psi _i^{-1}(t;\tilde{\Lambda }_0^D) \int _0^t \exp \{\beta _0^TX_i\}\mathrm{{d}}\tilde{\Lambda }_0^R(u),\\ \tilde{Q}(t)&= \frac{\sum _{i=1}^n\tilde{\omega }_{2i}^{-1}(t)\Delta _i^*(t)N_i^R(t)}{\sum _{i=1}^n\Delta _i^*(t)}, \end{aligned}$$

and q(t) be the limit of \(\tilde{Q}(t).\) Note that

$$\begin{aligned} \tilde{U}_3(\xi _0)&= \sum _{i=1}^n\int _0^\tau \big \{N_i^R(t)-(\theta _0+1)\omega _{2i}^*(t)q(t)\big \}\mathrm{{d}}N_i^D(t)\nonumber \\&\quad -(\theta _0+1)\sum _{i=1}^n\int _0^\tau \tilde{Q}(t)\big \{\tilde{\omega }_{2i}(t)-\omega _{2i}^*(t)\big \} \mathrm{{d}}N_i^D(t)\nonumber \\&\quad -(\theta _0+1)\sum _{i=1}^n \int _0^\tau \big \{\tilde{Q}(t)-q(t) \big \} \omega _{2i}^*(t) \mathrm{{d}}N_i^D(t). \end{aligned}$$
(A.6)

As in the proof of (A.4), the second term on the right-hand side of (A.6) equals

$$\begin{aligned}&-(\theta _0+1)\sum _{i=1}^n\int _0^\tau \Big [\tilde{Q}(t) \big \{\psi _i^{-1}(t;\tilde{\Lambda }_0^D)-\psi _i^{-1}(t;\Lambda _0^D)\big \} \int _0^t \exp \{\beta _0^T X_i\}\mathrm{{d}}\Lambda _0^R(u) \Big ]\mathrm{{d}}N_i^D(t)\nonumber \\&\qquad -(\theta _0+1)\sum _{i=1}^n\int _0^\tau \tilde{Q}(t) \psi _i^{-1}(t;\tilde{\Lambda }_0^D) \exp \{\beta _0^T X_i\}\big [\tilde{\Lambda }_0^R(t)-\Lambda _0^R(t)\big ] \mathrm{{d}}N_i^D(t)\nonumber \\&\quad =(\theta _0+1)\sum _{i=1}^n\int _0^\tau \big [\phi _{1i}(t) \mathrm{{d}}H_3(t)-\phi _{2i}(t) \mathrm{{d}}H_4(t)\big ]+o_p(n^{1/2}), \end{aligned}$$
(A.7)

where \(H_3(t)\) and \(H_4(t)\) are the limits of \(\tilde{H}_3(t)\) and \(\tilde{H}_4(t)\) with

$$\begin{aligned} \tilde{H}_3(t)=\frac{1}{n}\sum _{i=1}^n \int _0^t \theta _0 \Big [\tilde{Q}(u) \psi _i^{-1}(u;\tilde{\Lambda }_0^D) \omega _{2i}^*(u) \Big ]\mathrm{{d}}N_i^D(u) \end{aligned}$$

and

$$\begin{aligned} \tilde{H}_4(t)=\frac{1}{n}\sum _{i=1}^n \int _0^t \tilde{Q}(u) \psi _i^{-1}(u;\tilde{\Lambda }_0^D) \mathrm{{d}}N_i^D(u). \end{aligned}$$

Let \(\mathrm{{d}}\Phi (t)=E\big \{\omega _{2i}^*(t) \mathrm{{d}}N_i^D(t)\big \},\)

$$\begin{aligned} \tilde{H}_5(t)&=\frac{\theta _0 \sum _{i=1}^n\psi _i^{-1}(t;\tilde{\Lambda }_0^D) \tilde{\omega }_{2i}^{-1}(t) \Delta _i^*(t)N_i^R(t)}{\sum _{i=1}^n\Delta _i^*(t)}, \\ \tilde{H}_6(t)&=\frac{\sum _{i=1}^n\psi _i^{-1}(t;\tilde{\Lambda }_0^D)\tilde{\omega }_{2i}^{-1}(t) \omega _{2i}^{*-1}(t) \Delta _i^*(t)N_i^R(t)}{\sum _{i=1}^n\Delta _i^*(t)}, \end{aligned}$$

and \(H_5(t)\) and \(H_6(t)\) be the limits of \(\tilde{H}_5(t)\) and \(\tilde{H}_6(t),\) respectively. In a similar manner, the third term on the right-hand side of (A.6) is

$$\begin{aligned}&(\theta _0+1)\sum _{i=1}^n\int _0^\tau \big [\phi _{1i}(t)H_5(t)+\phi _{2i}(t)H_6(t)\big ]\mathrm{{d}}\Phi (t)\nonumber \\&\quad -(\theta _0+1)\sum _{i=1}^n\int _0^\tau \Big [ \frac{\omega _{2i}^{*-1}(t)\Delta _i^*(t) N_i^R(t)}{E\{\Delta _i^*(t)\}} -\frac{q(t)}{E\{\Delta _i^*(t)\}}\Delta _i^*(t)\Big ]\mathrm{{d}}\Phi (t) +o_p(n^{1/2}). \end{aligned}$$
(A.8)

Thus, it follows from (A.6)–(A.8) that

$$\begin{aligned} \tilde{U}_3(\xi _0)=\sum _{i=1}^n \vartheta _{3i}+o_p(n^{1/2}), \end{aligned}$$
(A.9)

where

$$\begin{aligned} \vartheta _{3i}&= \int _0^\tau \big \{N_i^R(t)-(\theta _0+1)\omega _{2i}^*(t)q(t)\big \}\mathrm{{d}}N_i^D(t)\\&\quad -(\theta _0+1)\int _0^\tau \big [\phi _{1i}(t)d H_3(t)+\phi _{2i}(t)\mathrm{{d}}H_4(t)\big ]\\&\quad +(\theta _0+1)\int _0^\tau \big [\phi _{1i}(t)H_5(t)+\phi _{2i}(t)H_6(t)\big ]\mathrm{{d}}\Phi (t)\\&\quad -(\theta _0+1)\int _0^\tau \Big [\frac{\omega _{2i}^{*-1}(t)\Delta _i^*(t) N_i^R(t)}{E\{\Delta _i^*(t)\}} -\frac{q(t)\Delta _i^*(t)}{E\{\Delta _i^*(t)\}}\Big ]\mathrm{{d}}\Phi (t). \end{aligned}$$

Let \(B_i(t)= B_i(t; \alpha _0, \theta _0, \Lambda _0^D),\) and

$$\begin{aligned} \bar{B}(t)=\frac{\sum _{j=1}^n\Delta _j(t) B_j(t)\exp \{\beta _0^TX_j\}}{\sum _{j=1}^n\Delta _j(t)\exp \{\beta _0^TX_j\}}. \end{aligned}$$

Note that

$$\begin{aligned} \tilde{U}_4(\xi _0)= R_1+R_2+R_3, \end{aligned}$$
(A.10)

where

$$\begin{aligned} R_1&=\sum _{i=1}^n\int _0^\tau \begin{pmatrix}{\begin{matrix}X_i-\bar{X}(t;\beta _0)\\ \\ B_i(t)-\bar{B}(t) \end{matrix}}\end{pmatrix}\mathrm{{d}}M_i(t),\\ R_2&=\sum _{i=1}^n\int _0^\tau \begin{pmatrix}{\begin{matrix}X_i-\bar{X}(t;\beta _0)\\ \\ B_i(t;\tilde{\Lambda }_0^D)-{\tilde{B}}(t) \end{matrix}}\end{pmatrix}\{\mathrm{{d}}\tilde{M}_i(t)-\mathrm{{d}}M_i(t)\}\\ R_3&= \sum _{i=1}^n\int _0^\tau \Big [\begin{pmatrix}{\begin{matrix}X_i-\bar{X}(t;\beta _0)\\ \\ B_i(t;\tilde{\Lambda }_0^D)-{\tilde{B}}(t) \end{matrix}}\end{pmatrix}-\begin{pmatrix}{\begin{matrix}X_i-\bar{X}(t;\beta _0)\\ \\ B_i(t)-\bar{B}(t) \end{matrix}}\end{pmatrix}\Big ]\mathrm{{d}}M_i(t), \end{aligned}$$

and

$$\begin{aligned} \mathrm{{d}}\tilde{M}_i(t)&=Y_i(t)\psi _i(t;\tilde{\Lambda }_0^D)\mathrm{{d}}N_i^R(t) -\Delta _i(t)\big \{\gamma _0^TX_i+\eta _0^T B_i(t;\tilde{\Lambda }_0^D)\big \} \exp \{\beta _0^TX_i\}\mathrm{{d}}\tilde{\Lambda }_0^R(t)\\&\quad -\Delta _i(t)\exp \{\beta _0^TX_i\}d{\mathcal {A}}_0(t). \end{aligned}$$

For \(R_1\) of (A.10), using the Lemma A.1 of Lin and Ying [8], we have

$$\begin{aligned} R_1=\sum _{i=1}^n\int _0^\tau \begin{pmatrix}{\begin{matrix}X_i-\bar{x}(t;\beta _0)\\ \\ B_i(t)-\bar{b}(t) \end{matrix}}\end{pmatrix}\mathrm{{d}}M_i(t)+o_p(n^{1/2}), \end{aligned}$$

where \(\bar{b}(t)\) is the limit of \(\bar{B}(t).\) For \(R_2\), we get

$$\begin{aligned} R_2&=\sum _{i=1}^n\int _0^\tau \begin{pmatrix}{\begin{matrix}X_i-\bar{X}(t;\beta _0)\\ \\ B_i(t;\tilde{\Lambda }_0^D)-{\tilde{B}}(t) \end{matrix}}\end{pmatrix}\Big \{Y_i(t)\big [\psi _i(t; \tilde{\Lambda }_0^D)-\psi _i(t; \Lambda _0^D)\big ]\mathrm{{d}}N_i^R(t)\\&\quad -\Delta _i(t)\gamma _0^TX_i\exp \{\beta _0^TX_i\}\mathrm{{d}}\{\tilde{\Lambda }_0^R(t)-\Lambda _0^R(t)\}\\&\quad -\Delta _i(t)\eta _0^TX_i\exp \{\beta _0^TX_i\} \big [B_i(t;\tilde{\Lambda }_0^D)\mathrm{{d}}\tilde{\Lambda }_0^R(t)-B_i(t)\mathrm{{d}}\Lambda _0^R(t)\big ]\Big \}. \end{aligned}$$

It then follows from (A.1) and (A.2) that

$$\begin{aligned} R_2=\sum _{i=1}^n\int _0^\tau \Big \{\phi _{1i}(t)\mathrm{{d}} G_1(t)- G_2(t)\mathrm{{d}}\phi _{2i}(t)\Big \}+o_p(n^{1/2}), \end{aligned}$$

where \(G_1(t)\) and \(G_2(t)\) are the limits of \(\tilde{G}_1(t)\) and \(\tilde{G}_2(t),\) respectively, with

$$\begin{aligned} \tilde{G}_1(t)&=\frac{1}{n}\sum _{i=1}^n\int _0^t\begin{pmatrix}{\begin{matrix}X_i-\bar{X}(u;\beta _0)\\ \\ B_i(u;\tilde{\Lambda }_0^D)-\bar{\tilde{B}}(u) \end{matrix}}\end{pmatrix} \theta _0Y_i(u)\exp \{\alpha _0^TX_i\}\mathrm{{d}}N_i^R(u)\\&\quad +\frac{1}{n}\sum _{i=1}^n\int _0^t\begin{pmatrix}{\begin{matrix}X_i-\bar{X}(u;\beta _0)\\ \\ B_i(u;\tilde{\Lambda }_0^D)-\bar{\tilde{B}}(u) \end{matrix}}\end{pmatrix} \frac{(\theta _0^2+\theta _0)\Delta _i(u)\eta _0^TZ_i\exp \{\alpha ^TX_i\}}{\psi _i(u;\tilde{\Lambda }_0^D) \psi _i(u)}\mathrm{{d}}\tilde{\Lambda }_0^R(u),\\ \tilde{G}_2(t)&= \frac{1}{n}\sum _{i=1}^n\begin{pmatrix}{\begin{matrix}X_i-\bar{X}(t;\beta _0)\\ \\ B_i(t;\tilde{\Lambda }_0^D)-\bar{\tilde{B}}(t) \end{matrix}}\end{pmatrix} \Delta _i(t)\gamma _0^TX_i\exp \{\beta _0^TX_i\}\\&\quad +\frac{1}{n}\sum _{i=1}^n\begin{pmatrix}{\begin{matrix}X_i-\bar{X}(t;\beta _0)\\ \\ B_i(t;\tilde{\Lambda }_0^D)-\bar{\tilde{B}}(t) \end{matrix}}\end{pmatrix} \Delta _i(t)\eta _0^TB_i(t)\exp \{\beta _0^TX_i\}. \end{aligned}$$

By the Lemma A.1 of Lin and Ying [8], it can be shown that \(R_3=o_p(n^{1/2}).\) Thus, we have

$$\begin{aligned} \tilde{U}_4(\xi _0)= \sum _{i=1}^n \vartheta _{4i} + o_p(n^{1/2}), \end{aligned}$$
(A.11)

where

$$\begin{aligned} \vartheta _{4i}=\int _0^\tau \begin{pmatrix}{\begin{matrix}X_i-\bar{x}(t; \beta _0)\\ \\ B_i(t)-\bar{b}(t) \end{matrix}}\end{pmatrix}\mathrm{{d}}M_i(t) +\int _0^\tau \big \{\phi _{1i}(t)d G_1(t)- G_3(t) \mathrm{{d}}\phi _{2i}(t)\big \}. \end{aligned}$$

Let \(\vartheta _i=(\vartheta _{1i}^T,\vartheta _{2i}^T,\vartheta _{3i},\vartheta _{4i}^T)^T,\) and \(\Gamma =\Gamma (\xi _0)\) defined in condition (C4). Then it follows from (A.4), (A.5), (A.9), (A.11), and the Taylor expansion that

$$\begin{aligned} n^{1/2}(\hat{\xi }-\xi _0)=n^{-1/2}\Gamma ^{-1} \sum _{i=1}^n \vartheta _{i}+o_p(1). \end{aligned}$$

By the multivariate central limit theorem, \(n^{1/2}(\hat{\xi }-\xi _0)\) is asymptotically normal with mean zero and covariance matrix \(\Gamma ^{-1}\Sigma (\Gamma ^T)^{-1},\) where \(\Sigma =E\{\vartheta _i \vartheta _i^T\}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, L., Sun, L. & Song, X. A Joint Modeling Approach for Longitudinal Data with Informative Observation Times and a Terminal Event. Stat Biosci 10, 609–633 (2018). https://doi.org/10.1007/s12561-018-9221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-018-9221-8

Keywords

Navigation