Skip to main content
Log in

NPBayes-fMRI: Non-parametric Bayesian General Linear Models for Single- and Multi-Subject fMRI Data

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

In this paper, we introduce NPBayes-fMRI, a user-friendly MATLAB GUI that implements a unified, probabilistically coherent non-parametric Bayesian framework for the analysis of task-related fMRI data from multi-subject experiments. The modeling approach is based on a spatio-temporal linear regression model that specifically accounts for the between-subjects heterogeneity in neuronal activity via a spatially informed multi-subject non-parametric variable selection prior. A characteristic feature of the approach is that it results in a clustering of the subjects into subgroups characterized by similar brain responses, while simultaneously producing group-level as well as subject-level activation maps. This is distinct from two-stage “group analysis” approaches traditionally considered in the fMRI literature, which separate the inference on the individual fMRI time courses from the inference at the population level. Here, we first describe the models and a Variational Bayes algorithm for posterior inference. Next, we introduce the toolbox and illustrate its features via an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bishop C (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  2. Bowman F, Caffo B, Bassett S, Kilts C (2008) A Bayesian hierarchical framework for spatial modeling of fMRI data. NeuroImage 39(1):146–156

    Article  Google Scholar 

  3. Buxton R, Frank L (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17(1):64–72

    Article  Google Scholar 

  4. Cerliani L, Thomas M, Aquino D, Contarino V, Bizzi A (2017) Disentangling subgroups of participants recruiting shared as well as different brain regions for the execution of the verb generation task: a data-driven fMRI data. Cortex 86:247–259

    Article  Google Scholar 

  5. Efron B (2008) Microarrays, empirical Bayes and the two-groups model. Stat Science 23(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  6. Fadili M, Bullmore E (2002) Wavelet-generalised least squares: a new BLU estimator of linear regression models with 1/f errors. NeuroImage 15:217–232

    Article  Google Scholar 

  7. Fischer-Baum S, Kook J, Lee Y, Ramos-Nunez A, Vannucci M (2017) Sight or sound? Heterogeneity in the neural and cognitive mechanisms of single word reading (submitted).

  8. Flandin G, Penny W (2007) Bayesian fMRI data analysis with sparse spatial basis function priors. NeuroImage 34(3):1108–1125

    Article  Google Scholar 

  9. Friston K (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36

    Article  MathSciNet  Google Scholar 

  10. Friston K, Jezzard P, Turner R (1994) Analysis of functional MRI time-series. Human Brain Mapp 1(2):153–171

    Article  Google Scholar 

  11. Friston K, Holmes A, Poline J, Grasby P, Williams S, Frackowiak R, Turner R (1995) Analysis of fMRI time-series revisited. NeuroImage 2(1):45–53

    Article  Google Scholar 

  12. Friston K, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: theory. NeuroImage 16:465–483

    Article  Google Scholar 

  13. Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapp 2:56–78

    Article  Google Scholar 

  14. Harrison L, Green G (2010) A Bayesian spatiotemporal model for very large data sets. NeuroImage 50(3):1126–1141

    Article  Google Scholar 

  15. Holmes A, Friston K (1998) Generalisability, random effects & population inference. NeuroImage 7:S754

    Article  Google Scholar 

  16. Jeong J, Vannucci M, Ko K (2013) A wavelet-based Bayesian approach to regression models with long memory errors and its application to fMRI data. Biometrics 69:184–196

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee K, Jones G, Caffo B, Bassett S (2014) Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data. Bayesian Anal 9(3):699–732

    Article  MathSciNet  MATH  Google Scholar 

  18. Li F, Zhang T, Wang Q, MZ G, EL M, Coan J (2015) Spatial Bayesian variable selection and grouping in high-dimensional scalar-on-image regressions. Ann Appl Stat 9(2):687–713

    Article  MathSciNet  Google Scholar 

  19. Lindquist M (2008) The statistical analysis of fMRI data. Stat Sci 23(4):439–464

    Article  MathSciNet  MATH  Google Scholar 

  20. Meyer F (2003) Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series. IEEE Trans Med Imaging 22(3):315–322

    Article  Google Scholar 

  21. Newton M, Noueiry A, Sarkar D, Ahlquist P (2004) Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5(2):155–176

    Article  MATH  Google Scholar 

  22. Penny W, Kiebel S, Friston K (2003) Variational bayesian inference for fmri time series. NeuroImage 19(3):727–741

    Article  Google Scholar 

  23. Penny W, Trujillo-Barreto N, Friston K (2005) Bayesian fMRI time series analysis with spatial priors. NeuroImage 24(2):350–362

    Article  Google Scholar 

  24. Propp J, Wilson D (1996) Exact sampling with coupled markov chains and applications to statistical mechanics. Random Struct Algorithms 9(1):223–252

    Article  MathSciNet  MATH  Google Scholar 

  25. Quirós A, Diez R, Gamerman D (2010) Bayesian spatiotemporal model of fMRI data. NeuroImage 49(1):442–456

    Article  Google Scholar 

  26. Rue H, Maritno S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrate nested Laplace approximations. J Royal Stat Soc Ser B 71:319–392

    Article  MathSciNet  MATH  Google Scholar 

  27. Sanyal N, Ferreira M (2012) Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. NeuroImage 63(3):1519–1531

    Article  Google Scholar 

  28. Smith M, Fahrmeir L (2007) Spatial Bayesian variable selection with application to functional magnetic resonance imaging. J Am Stat Assoc 102(478):417–431

    Article  MathSciNet  MATH  Google Scholar 

  29. Su S, Caffo B, Garrett-Mayer E, Bassett S (2009) Modified test statistics by inter-voxel variance shrinkage with an application to fMRI. Biostatistics 10(2):219–227

    Article  Google Scholar 

  30. Sun W, Reich B, Cai T, Guindani M, Schwartzman A (2015) False discovery control in large-scale spatial multiple testing. J Royal Stat Soc 77(1):59–83

    Article  MathSciNet  Google Scholar 

  31. Teh Y, Jordan M, Beal M, Blei D (2006) Hierarchical Dirichlet processes. J Am Stat Assoc 101(476):1–8

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang C, Paisley J, Blei D (2011) Online variational inference for the hierarchical Dirichlet process. International Conference on Artificial Intelligence and Statistics pp 752–760

  33. Woolrich M, Jenkinson M, Brady J, Smith S (2004) Fully Bayesian spatio-temporal modeling of fMRI data. IEEE Trans Med Imaging 23(2):213–231

    Article  Google Scholar 

  34. Woolrich M, Behrens T, Smith S (2004b) Constrained linear basis sets for HRF modelling using variational Bayes. NeuroImage 21(4):1748–1761

    Article  Google Scholar 

  35. Wornell G, Oppenheim A (1992) Estimation of fractal signals from noisy measurements using wavelets. IEEE Trans Signal Process 40(3):611–623

    Article  Google Scholar 

  36. Worsley K, Friston K (1995) Analysis of fMRI time-series revisited-again. NeuroImage 2:173–181

    Article  Google Scholar 

  37. Xia J, Liang F, Wang Y (2009) fMRI analysis through Bayesian variable selection with a spatial prior. IEEE International Symposium on Biomedical Imaging pp 714–717

  38. Zhang L, Guindani M, Versace F, Vannucci M (2014) A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses. NeuroImage 95:162–175

    Article  Google Scholar 

  39. Zhang L, Guindani M, Vannucci M (2015) Bayesian models for fMRI data analysis. WIREs Comput Stat 7(1):21–41

    Article  MathSciNet  Google Scholar 

  40. Zhang L, Guindani M, Versace F, Englemann J, Vannucci M (2016) A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data. Ann Appl Stat 10(2):638–666

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Vannucci.

Additional information

This work was partially supported by NSF-SES 1659921 and NSF-SES-1659925.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kook, J.H., Guindani, M., Zhang, L. et al. NPBayes-fMRI: Non-parametric Bayesian General Linear Models for Single- and Multi-Subject fMRI Data. Stat Biosci 11, 3–21 (2019). https://doi.org/10.1007/s12561-017-9205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-017-9205-0

Keywords

Navigation