Skip to main content

Advertisement

Log in

A Handwriting-Based Protocol for Assessing Neurodegenerative Dementia

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Handwriting dynamics is relevant to discriminate people affected by neurodegenerative dementia from healthy subjects. This can be possible by administering simple and easy-to-perform handwriting/drawing tasks on digitizing tablets provided with electronic pens. Encouraging results have been recently obtained; however, the research community still lacks an acquisition protocol aimed at (i) collecting different traits useful for research purposes and (ii) supporting neurologists in their daily activities. This work proposes a handwriting-based protocol that integrates handwriting/drawing tasks and a digitized version of standard cognitive and functional tests already accepted, tested, and used by the neurological community. The protocol takes the form of a modular framework which facilitates the modification, deletion, and incorporation of new tasks in accordance with specific requirements. A preliminary evaluation of the protocol has been carried out to assess its usability. Successively, the protocol has been administered to more than 100 elderly MCI and match controlled subjects. The proposed protocol intends to provide a “cognitive model” for evaluating the relationship between cognitive functions and handwriting processes in healthy subjects as well as in cognitively impaired patients. The long-term goal of this research is the development of an easy-to-use and non-invasive methodology for detecting and monitoring neurodegenerative dementia during screening and follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cummings JL & Benson DF. Dementia: A clinical approach. Butterworth-Heinemann Medical; 1992.

  2. Alzheimer’s Association. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement. 2017;13(4):325–73.

    Article  Google Scholar 

  3. Lang AE, Lozano AM. Parkinson’s disease. N Engl J Med. 1998;339(15):1044–53.

    Article  CAS  PubMed  Google Scholar 

  4. Poewe W, Gauthier S, Aarsland D, Leverenz JB, Barone P, Weintraub D, et al. Diagnosis and management of Parkinson’s disease dementia. Int J Clin Pract. 2008;62(10):1581–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al. Mild cognitive impairment. Lancet. 2006;367(9518):1262–70.

    Article  PubMed  Google Scholar 

  6. Folstein MF, Robins LN, Helzer JE. The mini-mental state examination. Arch Gen Psychiatry. 1983;40(7):812–2.

  7. Faundez-Zanuy M, Hussain A, Mekyska J, Sesa-Nogueras E, Monte-Moreno E, Esposito A, et al. Biometric applications related to human beings: there is life beyond security. Cogn Comput. 2013;5(1):136–51.

    Article  Google Scholar 

  8. Lopez-de-Ipiña K, Alonso JB, Solé-Casals J, Barroso N, Henriquez P, Faundez-Zanuy M, … & Eguiraun H. On automatic diagnosis of Alzheimer’s disease based on spontaneous speech analysis and emotional temperature. Cogn Comput. 2015;7(1):44–55.

  9. Tseng MH, Cermak SA. The influence of ergonomic factors and perceptual-motor abilities on handwriting performance. Am J Occup Ther. 1993;47(10):919–26.

    Article  CAS  PubMed  Google Scholar 

  10. Impedovo D, Pirlo G. Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective. IEEE Rev Biomed Eng. 2019;12:209–20

  11. Kawa J, Bednorz A, Stępień P, Derejczyk J, Bugdol M. Spatial and dynamical handwriting analysis in mild cognitive impairment. Comput Biol Med. 2017;82:21–8.

    Article  PubMed  Google Scholar 

  12. Müller S, Preische O, Heymann P, Elbing U, Laske C. Diagnostic value of a tablet-based drawing task for discrimination of patients in the early course of Alzheimer’s disease from healthy individuals. J Alzheimers Dis. 2017;55(4):1463–9.

    Article  PubMed  Google Scholar 

  13. Müller S, Preische O, Heymann P, Elbing U, Laske C. Increased diagnostic accuracy of digital vs conventional clock drawing test for discrimination of patients in the early Course of Alzheimer’s disease from cognitively healthy individuals. Front Aging Neurosci. 2017;9.

  14. Schröter A, Mergl R, Bürger K, Hampel H, Möller HJ, Hegerl U. Kinematic analysis of handwriting movements in patients with Alzheimer’s disease, mild cognitive impairment, depression and healthy subjects. Dement Geriatr Cogn Disord. 2003;15(3):132–42.

    Article  PubMed  Google Scholar 

  15. Slavin MJ, Phillips JG, Bradshaw JL, Hall KA, Presnell I. Consistency of handwriting movements in dementia of the Alzheimer’s type: a comparison with Huntington’s and Parkinson’s diseases. J Int Neuropsychol Soc. 1999;5(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  16. Bidet-Ildei C, Pollak P, Kandel S, Fraix V, Orliaguet JP. Handwriting in patients with Parkinson disease: effect of L-dopa and stimulation of the sub-thalamic nucleus on motor anticipation. Hum Mov Sci. 2011;30(4):783–91.

    Article  PubMed  Google Scholar 

  17. Drotár P, Mekyska J, Rektorová I, Masarová L, Smékal Z, Faundez-Zanuy M. Analysis of in-air movement in handwriting: a novel marker for Parkinson’s disease. Comput Methods Prog Biomed. 2014;117(3):405–11.

    Article  Google Scholar 

  18. Drotár P, Mekyska J, Rektorová I, Masarová L, Smékal Z, Faundez-Zanuy M. Decision support framework for Parkinson’s disease based on novel handwriting markers. IEEE Trans Neural Syst Rehabil Eng. 2015;23(3):508–16.

    PubMed  Google Scholar 

  19. Ünlü A, Brause R, Krakow K. Handwriting analysis for diagnosis and prognosis of Parkinson’s disease. In: International Symposium on Biological and Medical Data Analysis. Berlin Heidelberg: Springer; 2006. p. 441–50.

    Chapter  Google Scholar 

  20. Smits EJ, Tolonen AJ, Cluitmans L, van Gils M, Conway BA, Zietsma RC, et al. Standardized handwriting to assess bradykinesia, micrographia and tremor in Parkinson’s disease. PLoS One. 2014;9(5):e97614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ponsen MM, Daffertshofer A, Wolters EC, Beek PJ, Berendse HW. Impairment of complex upper limb motor function in de novo Parkinson's disease. Parkinsonism Relat Disord. 2008;14(3):199–204.

    Article  PubMed  Google Scholar 

  22. Drotár P, Mekyska J, Rektorová I, Masarová L, Smékal Z, Faundez-Zanuy M. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s disease. Artif Intell Med. 2016;67:39–46.

    Article  PubMed  Google Scholar 

  23. Alonso-Martinez C, Faundez-Zanuy M, Mekyska J. A comparative study of in-air trajectories at short and long distances in online handwriting. Cogn Comput. 2017;9(5):712–20.

    Article  Google Scholar 

  24. Rosenblum S, Samuel M, Zlotnik S, Erikh I, Schlesinger I. Handwriting as an objective tool for Parkinson’s disease diagnosis. J Neurol. 2013;260(9):2357–61.

    Article  PubMed  Google Scholar 

  25. Rosenblum S, Engel-Yeger B, Fogel Y. Age-related changes in executive control and their relationships with activity performance in handwriting. Human Movement Sci. 2013;32:363–76.

    Article  Google Scholar 

  26. Luria G, Kahana A, Rosenblum S. Detection of deception via handwriting behaviors using a computerized tool: toward an evaluation of malingering. Cogn Comput. 2014;6(4):849–55.

    Article  Google Scholar 

  27. Rosenblum S, Luria G. Applying a handwriting measurement model for capturing cognitive load implications through complex figure drawing. Cogn Comput. 2016;8(1):69–77.

    Article  Google Scholar 

  28. Badarna M, Shimshoni I, Luria G, Rosenblum S. The importance of pen motion pattern groups for semiautomatic classification of handwriting into mental workload classes. Cogn Comput. 2018:1–13.

  29. De Stefano C, Fontanella F, Impedovo D, Pirlo G, Scotto di Freca A. Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recogn Lett. 2019;121:37–45.

    Article  Google Scholar 

  30. Impedovo D, Pirlo G, Angelillo MT, Vessio G. Towards a digitized protocol based on handwriting for the assessment of neurodegenerative disorders. CEUR Workshop Proc. 2017;1982:1–8.

    Google Scholar 

  31. Pirlo G, Cuccovillo V, Diaz-Cabrera M, Impedovo D, Mignone P. Multidomain verification of dynamic signatures using local stability analysis. IEEE Transactions on Human-Machine Systems. 2015;45(6):805–10.

    Article  Google Scholar 

  32. Borson S, Scanlan J, Brush M, Vitaliano P, Dokmak A. The Mini-Cog: a cognitive ‘vital signs’ measure for dementia screening in multi-lingual elderly. Int J Geriatr Psychiatry. 2000;15(11):1021–7.

    Article  CAS  PubMed  Google Scholar 

  33. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.

    Article  CAS  PubMed  Google Scholar 

  34. Reitan RM. Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills. 1958;8(3):271–6.

    Article  Google Scholar 

  35. Della Sala S, Laiacona M, Spinnler H, Ubezio C. A cancellation test: its reliability in assessing attentional deficits in Alzheimer’s disease. Psychol Med. 1992;22(4):885–901.

    Article  CAS  PubMed  Google Scholar 

  36. Dahmen J, Cook D, Fellows R, Schmitter-Edgecombe M. An analysis of a digital variant of the Trail Making Test using machine learning techniques. Technol Health Care. 2017;25(2):251–64.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH. Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp Neurol. 1997;146(1):159–70.

    Article  CAS  PubMed  Google Scholar 

  38. Pirlo G, Diaz M, Ferrer MA, Impedovo D, Occhionero F, Zurlo U. Early diagnosis of neurodegenerative diseases by handwritten signature analysis. In: International Conference on Image Analysis and Processing. 2015. p. 290–297.

  39. Pereira CR, Weber SA, Hook C, Rosa GH, Papa JP. Deep learning-aided Parkinson’s disease diagnosis from handwritten dynamics. In: 29th SIBGRAPI conference on graphics, patterns and images. 2016. p. 340-346.

  40. San Luciano M, Wang C, Ortega RA, Yu Q, Boschung S, Soto-Valencia J, et al. Digitized spiral drawing: a possible biomarker for early Parkinson’s disease. PLoS One. 2016;11(10):e0162799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pullman SL. Spiral analysis: a new technique for measuring tremor with a digitizing tablet. Mov Disord. 1998;13(S3):85–9.

    Article  PubMed  Google Scholar 

  42. Impedovo D, Pirlo G, Mangini FM, Barbuzzi D, Rollo A, Balestrucci A, … & Plamondon R. Writing generation model for health care neuromuscular system investigation. In International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics. Cham: Springer; 2013. p. 137–148

  43. Werner P, Rosenblum S, Bar-On G, Heinik J, Korczyn A. Handwriting process variables discriminating mild Alzheimer’s disease and mild cognitive impairment. J Gerontol B Psychol Sci Soc Sci. 2006;61(4):228–36.

    Article  Google Scholar 

  44. Garre-Olmo J, Faúndez-Zanuy M, López de Ipiña K, Calvó-Perxas L, Turró-Garriga O. Kinematic and pressure features of handwriting and drawing: preliminary results between patients with mild cognitive impairment, Alzheimer disease and healthy controls. Curr Alzheimer Res. 2017;14(2017):960–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brooke J. SUS-A quick and dirty usability scale. Usability Evaluation in Industry. 1996;189(194):4–7.

    Google Scholar 

  46. Boren T, Ramey J. Thinking aloud: reconciling theory and practice. IEEE Transactions on Professional Communication. 2000;43(3):261–78.

    Article  Google Scholar 

  47. Giancardo L, Sanchez-Ferro A, Arroyo-Gallego T, Butterworth I, Mendoza CS, Montero P, … & Estépar RSJ. Computer keyboard interaction as an indicator of early Parkinson’s disease. Sci Rep. 2016;6.

  48. Griol D, Callejas Z. Mobile conversational agents for context-aware care applications. Cogn Comput. 2016;8(2):336–56.

    Article  Google Scholar 

  49. Dubois B, Slachevsky A, Litvan I, Pillon BFAB. The FAB A frontal assessment battery at bedside. Neurology. 2000;55(11):1621–6.

    Article  CAS  PubMed  Google Scholar 

  50. Niazmand K, Tonn K, Kalaras A, Fietzek UM, Mehrkens JH & Lueth TC. Quantitative evaluation of Parkinson’s disease using sensor based smart glove. In Computer-Based Medical Systems (CBMS), 2011 24th International Symposium. IEEE; 2011. p. 1-8

  51. Li KY, Chu PY, Pickett KA. The effect of dopaminergic medication on joint kinematics during haptic movements in individuals with Parkinson’s disease. Behav Neurol. 2017;2017:1–8.

    CAS  Google Scholar 

  52. Likforman-Sulem L, Esposito A, Faundez-Zanuy M, Clémençon S, Cordasco G. EMOTHAW: a novel database for emotional state recognition from handwriting and drawing. IEEE Transactions on Human-Machine Systems. 2017;47(2):273–84.

    Article  Google Scholar 

Download references

Funding

This work has been funded by the Italian Ministry of Education, University and Research within the PRIN2015 - Handwriting Analysis against Neuromuscular Disease - HAND Project under Grant H96J16000820001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Impedovo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Impedovo, D., Pirlo, G., Vessio, G. et al. A Handwriting-Based Protocol for Assessing Neurodegenerative Dementia. Cogn Comput 11, 576–586 (2019). https://doi.org/10.1007/s12559-019-09642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-019-09642-2

Keywords

Navigation