Skip to main content

Advertisement

Log in

Multi-criteria Outranking Methods with Hesitant Probabilistic Fuzzy Sets

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Due to the defects of hesitant fuzzy sets (HFSs) in the actual decision-making process, it is necessary to add the probabilities corresponding to decision maker’s preferences to the values in HFSs. Hesitant probabilistic fuzzy sets (HPFSs) are suitable for presenting this kind of information and contribute positively to the efficiency of depicting decision maker’s preferences in practice. However, some important issues in HPFSs utilization remain to be addressed. In this paper, the qualitative flexible multiple criteria method (QUALIFLEX) and the preference ranking organization method for enrichment evaluations II (PROMETHEE II) are extended to HPFSs. First, we provide a comparison method for hesitant probabilistic fuzzy elements (HPFEs). Second, we propose a novel possibility degree depicting the relations between two HPFEs, and then, employ the possibility degree to extend the QUALIFLEX and PROMETHEE II methods to hesitant probabilistic fuzzy environments based on the proposed possibility degree. Third, an information integration method is introduced to simplify the processing of HPFE evaluation information. Finally, we provide an example to demonstrate the usefulness of the proposed methods. An illustrative example in conjunction with comparative analyses is employed to demonstrate that our proposed methods are feasible for practical multi-criteria decision-making (MCDM) problems, and the final ranking results show that the proposed methods are more accurate than the compared methods in an actual decision-making processes. HPFSs are more practical than HFSs due to their efficiency in comprehensively representing uncertain, vague, and probabilistic information. The proposed methods are effective for solving hesitant probabilistic MCDM problems and are expected to contribute to the solution of MCDM problems involving uncertain or vague information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu Y, Vong CM, Wong PK. Extreme learning machine for huge hypotheses re-ranking in statistical machine translation. Cogn Comput. 2017;9(2):285–94.

  2. Løkse S, Bianchi FM, Jenssen R. Training echo state networks with regularization through dimensionality reduction. Cogn Comput. 2017. doi:10.1007/s12559-017-9450-z.

  3. Nian XH, Sun MP, Guo H, Wang HB, Dai LQ. Observer-based stabilization control of time-delay T-S fuzzy systems via the non-uniform delay partitioning approach. Cogn Comput. 2017;9(2):225–36.

  4. Yao YY. Three-way decisions and cognitive computing. Cogn Comput. 2016;8(6):543–54.

    Article  Google Scholar 

  5. Zhao HM, Ren JC. Cognitive computation of compressed sensing for watermark signal measurement. Cogn Comput. 2016;8(2):246–60.

    Article  Google Scholar 

  6. Yu J, Rui Y, Tao DC. Click prediction for web image reranking using multimodal sparse coding. IEEE Transactions on Image Procession. 2014;25(3):2019–32.

    Google Scholar 

  7. Yu J, Yang XK, Gao F, Tao DC. Deep multimodal distance metric learning using click constraints for image ranking. IEEE Transactions on Cybernetics. 2016;PP(99):1–11. doi:10.1109/TCYB.2016.2591583.

  8. Zhou Y, Zeng FZ, Zhao HM, Murray P, Ren JC. Hierarchical visual perception and two-dimensional compressive sensing for effective content-based color image retrieval. Cogn Comput. 2016;8(5):877–89.

    Article  Google Scholar 

  9. Yu J, Zhang BP, Kuang ZZ, Lin D, Fan JP. Image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Transactions on Information Forensics and Security. 2017;12(5):1005–16. doi:10.1109/TIFS.2016.2636090.

  10. Zhang J, Ding SF, Zhang N, Xue Y. Weight uncertainty in Boltzmann machine. Cogn Comput. 2016;8(6):1064–73.

    Article  Google Scholar 

  11. Wang Q, Spratling MW. Contour detection in colour images using a neurophysiologically inspired model. Cogn Comput. 2016;8(6):1027–35.

    Article  Google Scholar 

  12. Hong CQ, Yu J, Tao DC, Wang M. Image-based 3D human pose recovery by multi-view locality sensitive sparse retrieval. IEEE Trans Ind Electron. 2015;62(6):3742–51.

    Google Scholar 

  13. Hong CQ, Yu J, Wan J, Tao DC, Wang M. Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process. 2015;24(12):5659–70.

    Article  PubMed  Google Scholar 

  14. Meng FY, Wang C, Chen XH. Linguistic interval hesitant fuzzy sets and their application in decision making. Cogn Comput. 2016;8(1):52–68.

    Article  Google Scholar 

  15. Farhadinia B, Xu ZS. Distance and aggregation-based methodologies for hesitant fuzzy decision making. Cogn Comput. 2017;9(1):81–94.

  16. Zhao N, Xu ZS, Liu FJ. Group decision making with dual hesitant fuzzy preference relations. Cogn Comput. 2016;8(6):1119–43.

    Article  Google Scholar 

  17. Liu PD, Tang GL. Multi-criteria group decision-making based on interval neutrosophic uncertain linguistic variables and choquet integral. Cogn Comput. 2016;8(6):1036–56.

    Article  Google Scholar 

  18. Torra V. Hesitant fuzzy sets. International Journal of Intelligent System. 2010;25(6):529–39.

    Google Scholar 

  19. Peng J, Wang J, Wu X. Novel multi-criteria decision-making approaches based on hesitant fuzzy sets and Prospect theory. International Journal of Information Technology & Decision Making. 2016;15(3):621–43.

    Article  Google Scholar 

  20. Xia MM, Xu ZS. Hesitant fuzzy information aggregation in decision making. Int J Approx Reason. 2011;52(3):395–407.

    Article  Google Scholar 

  21. Farhadinia B. A series of score functions for hesitant fuzzy sets. Inf Sci. 2014;277(2):102–10.

    Article  Google Scholar 

  22. Farhadinia B. Hesitant fuzzy sets lexicographical ordering and its application to multi-attribute decision making. Inf Sci. 2016;327(C):233–45.

    Article  Google Scholar 

  23. Chen N, Xu ZS, Xia MM. Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis. Appl Math Model. 2013;37(4):2197–211.

    Article  Google Scholar 

  24. Liao HC, Xu ZS, Zeng XJ. Novel correlation coefficients between hesitant fuzzy sets and their application in decision making. Knowl-Based Syst. 2015;82(C):115–27.

    Article  Google Scholar 

  25. Farhadinia B. Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets. Inf Sci. 2013;240(10):129–44.

    Article  Google Scholar 

  26. Bisht K, Kumar S. Fuzzy time series forecasting method based on hesitant fuzzy set. Expert Syst Appl. 2016;64(1):557–68.

    Article  Google Scholar 

  27. Hu BD. Three-way decisions paces based on partially ordered sets and three-way decisions based on hesitant fuzzy sets. Knowl-Based Syst. 2016;91:16–31.

    Article  Google Scholar 

  28. Rodríguez RM, Martínez L, Torra V, Xu ZS, Herrera F. Hesitant fuzzy sets: state of the art and future directions. Int J Intell Syst. 2014;29(6):495–524.

    Article  Google Scholar 

  29. Rodríguez RM, Bedregal B, Bustince H, Dong YC, Farhadinia B, Kahraman C, Martínez L, Torra V, Xu ZS, Herrera F. A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Towards high quality progress. Information Fusion. 2016;29(C):89–97.

    Article  Google Scholar 

  30. Wei GW, Zhao XF, Lin R. Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision making. Knowl-Based Syst. 2013;46(4):43–53.

    Article  Google Scholar 

  31. Zhu B, Xu ZS, Xia MM. Dual hesitant fuzzy set. J Appl Math. 2012;11:2607–45.

    Google Scholar 

  32. Hu JH, Xiao KL, Chen XH, Liu YM. Interval type-2 hesitant fuzzy set and its application in multi-criteria decision making. Comput Ind Eng. 2015;87:91–103.

    Article  Google Scholar 

  33. Lin R, Zhao XF, Wei GW. Model for selecting an ERP system with hesitant fuzzy linguistic information. Journal of intelligent & Fuzzy Systems Application. 2014;26(5):2155–65.

    Google Scholar 

  34. Bedregal B, Beliakov G, Bustince H, Calvo T, Mesiar R, Paternain D. A class of fuzzy multisets with a fixed number of memberships. Inf Sci. 2012;189(6):1–17.

    Article  Google Scholar 

  35. Bustince H, Barrenechea E, Pagola M, Fernandez J, Xu ZS, Bedregal B, et al. A historical account of types of fuzzy sets and their relationships. IEEE Trans Fuzzy Syst. 2016;24(1):179–94.

    Article  Google Scholar 

  36. Zhang S, Xu ZS, He Y. Operations and integrations of probabilistic hesitant fuzzy information in decision making. Information Fusion. 2017;38:1–11. doi:10.1016/j.inffus.2017.02.001.

  37. Xu ZS, Zhou W. Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment. Fuzzy Optim Decis Making. 2016. doi:10.1007/s10700-016-9257-5.

  38. Chen TY. Multiple criteria decision analysis using a likelihood-based outranking method based on interval-valued intuitionistic fuzzy sets. Inf Sci. 2014;286(1):188–208.

    Article  Google Scholar 

  39. Ji P, Zhang H, Wang J. A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Comput & Applic. 2016. doi:10.1007/s00521-016-2436-z.

  40. Yu SM, Wang J, Wang JQ. An extended TODIM approach with intuitionistic linguistic number. Int Trans Oper Res. 2016. doi:10.1111/itor.12363.

  41. Zhang XL. Multicriteria Pythagorean fuzzy decision analysis: a hierarchical QUALIFLEX approach with the closeness index-based ranking method. Inf Sci. 2016;330(10):104–24.

    Article  Google Scholar 

  42. W JC, Tsao TY, Chen TY. A likelihood-based QUALIFLEX method with interval type-2 fuzzy sets for multiple criteria decision analysis. Soft Comput. 2015;19(8):2225–43.

    Article  Google Scholar 

  43. Yu SM, Wang J, Wang JQ. An interval type-2 fuzzy likelihood-based MABAC approach and its application in selecting hotels on the tourism website. International Journal of Fuzzy Systems. 2017;19(1):47–61.

    Article  Google Scholar 

  44. Tian ZP, Wang J, Wang JQ, Zhang HY. A likelihood-based qualitative flexible approach with hesitant fuzzy linguistic information. Cognitive Computing. 2016;8(4):670–83.

    Article  CAS  Google Scholar 

  45. Chen TY. Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis. Inf Sci. 2014;261(10):149–69.

    Article  Google Scholar 

  46. Peng JJ, Wang JQ, Yang WE. A multi-valued neutrosophic qualitative flexible approach based on likelihood for multi-criteria decision-making problems. Int J Syst Sci. 2017;48(2):425–35.

    Article  Google Scholar 

  47. Peng JJ, Wang JQ, Wu XH. An extension of the ELECTRE approach with multi-valued neutrosophic information. Neural Comput & Applic. 2016. doi:10.1007/s00521-016-2411-8.

  48. Wan SP, Xu GL, Dong JY. Supplier selection using ANP and ELECTRE II in interval 2-tuple linguistic environment. Inf Sci. 2017;385-386(S):19–38.

    Article  Google Scholar 

  49. Chen TY. An interval type-2 fuzzy PROMETHEE method using a likelihood-based outranking comparison approach. Information Fusion. 2015;25(C):105–20.

    Article  Google Scholar 

  50. Zhou H, Wang J, Zhang H. Stochastic multicriteria decision-making approach based on SMAA-ELECTRE with extended gray numbers. Int Trans Oper Res. 2017. doi:10.1111/itor.12380.

  51. Wang JQ, Kuang JJ, Wang J, Zhang HY. An extended outranking approach to rough stochastic multi-criteria decision-making problems. Cogn Comput. 2016;8(6):1144–60.

    Article  Google Scholar 

  52. Kuang H, Kilgour DM, Hipel DW. Grey-based PROMETHEE II with application to evaluation of source water protection strategies. Inf Sci. 2015;294(10):376–89.

    Article  Google Scholar 

  53. Boujelben MA. A unicriterion analysis based on the PROMETHEE principles for multicriteria ordered clustering. Omega. 2017;69:126–40.

  54. Corrente S, Figueira JR, Greco S. The SMAA-PROMETHEE method. Eur J Oper Res. 2014;239(2):514–22.

    Article  Google Scholar 

  55. Wang J, Wang JQ, Zhang HY. A likelihood-based TODIM approach based on multi-hesitant fuzzy linguistic information for evaluation in logistics outsourcing. Comput Ind Eng. 2016;99(C):287–99.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editors and anonymous reviewers for their helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China (No. 71571193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-qiang Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was not required as no humans or animals were involved.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Appendices

Appendix 1

Table 8 Table of acronyms

Appendix 2. Proof of Property 1

Proof

(1) can be easily obtained, and is omitted here.

Since (2), (3), and (4) are similar, we choose (4) to prove. If h(p x ) < h(p y ), then according to Definition 9, we obtain \( {\gamma}_x^{\sigma (j)}\le {\gamma}_y^{\sigma (j)} \) (j = 1, 2,  ⋯ , l; l = min {m, n}), where at least one of the “≤” relations should be “<.” In the following, we will show the proof in two different conditions:

  1. Case 1:

    m = n

$$ \begin{array}{c}\hfill \varphi \left( h\left({p}_x\right), h\left({p}_y\right)\right)=\sum_{i=1}^m\sum_{j=1}^n\frac{\gamma_{i x}}{\gamma_{i x}+{\gamma}_{j y}}{p}_{i x}{p}_{j y}=\sum_{i=1}^m\sum_{j=1}^m\frac{\gamma_{i x}}{\gamma_{i x}+{\gamma}_{j y}}{p}_{i x}{p}_{j y}\hfill \\ {}\hfill ={\sum}_{j=1}^m\frac{\gamma_x^{\sigma (1)}}{\gamma_x^{\sigma (1)}+{\gamma}_y^{\sigma (j)}}{p}_x^{\sigma (1)}{p}_y^{\sigma (j)}+\cdots +{\sum}_{j=1}^m\frac{\gamma_x^{\sigma (m)}}{\gamma_x^{\sigma (1)}+{\gamma}_y^{\sigma (j)}}{p}_x^{\sigma (m)}{p}_y^{\sigma (j)}\hfill \\ {}\hfill ={\sum}_{i=1}^m\frac{\gamma_x^{\sigma (i)}}{\gamma_x^{\sigma (i)}+{\gamma}_y^{\sigma (i)}}{p}_x^{\sigma (i)}{p}_y^{\sigma (i)}+\left(\frac{\gamma_x^{\sigma (1)}}{\gamma_x^{\sigma (1)}+{\gamma}_y^{\sigma (2)}}{p}_x^{\sigma (1)}{p}_y^{\sigma (2)}+\frac{\gamma_x^{\sigma (2)}}{\gamma_x^{\sigma (2)}+{\gamma}_y^{\sigma (1)}}{p}_x^{\sigma (2)}{p}_y^{\sigma (1)}\right)\hfill \\ {}\hfill +\cdots +\left(\frac{\gamma_x^{\sigma (1)}}{\gamma_x^{\sigma (1)}+{\gamma}_y^{\sigma (m)}}{p}_x^{\sigma (1)}{p}_y^{\sigma (m)}+\frac{\gamma_x^{\sigma (m)}}{\gamma_x^{\sigma (m)}+{\gamma}_y^{\sigma (1)}}{p}_x^{\sigma (m)}{p}_y^{\sigma (1)}\right)\hfill \\ {}\hfill +\cdots +\left(\frac{\gamma_x^{\sigma \left( m-1\right)}}{\gamma_x^{\sigma \left( m-1\right)}+{\gamma}_y^{\sigma (m)}}{p}_x^{\sigma \left( m-1\right)}{p}_y^{\sigma (m)}+\frac{\gamma_x^{\sigma (m)}}{\gamma_x^{\sigma (m)}+{\gamma}_y^{\sigma \left( m-1\right)}}{p}_x^{\sigma (m)}{p}_y^{\sigma \left( m-1\right)}\right)\hfill \\ {}\hfill <\left(\frac{1}{2}{p}_x^{\sigma (1)}{p}_y^{\sigma (1)}+\cdots +\frac{1}{2}{p}_x^{\sigma (m)}{p}_y^{\sigma (m)}\right)+\left(\frac{1}{2}{p}_x^{\sigma (1)}{p}_y^{\sigma (2)}+\frac{1}{2}{p}_x^{\sigma (2)}{p}_y^{\sigma (1)}\right)+\cdots +\left(\frac{1}{2}{p}_x^{\sigma (1)}{p}_y^{\sigma (m)}+\frac{1}{2}{p}_x^{\sigma (m)}{p}_y^{\sigma (1)}\right)\hfill \\ {}\hfill +\cdots +\left(\frac{1}{2}{p}_x^{\sigma \left( m-1\right)}{p}_y^{\sigma (m)}+\frac{1}{2}{p}_x^{\sigma (m)}{p}_y^{\sigma \left( m-1\right)}\right)\hfill \\ {}\hfill =\frac{1}{2}\left({p}_x^{\sigma (1)}{p}_y^{\sigma (1)}+\cdots +{p}_x^{\sigma (1)}{p}_y^{\sigma (m)}\right)+\frac{1}{2}\left({p}_x^{\sigma (2)}{p}_y^{\sigma (1)}+\cdots +{p}_x^{\sigma (2)}{p}_y^{\sigma (m)}\right)+\cdots +\frac{1}{2}\left({p}_x^{\sigma (m)}{p}_y^{\sigma (1)}+\cdots +{p}_x^{\sigma (m)}{p}_y^{\sigma (m)}\right)\hfill \\ {}\hfill =\frac{1}{2}{p}_x^{\sigma (1)}\left({p}_y^{\sigma (1)}+\cdots +{p}_y^{\sigma (m)}\right)+\frac{1}{2}{p}_x^{\sigma (2)}\left({p}_y^{\sigma (1)}+\cdots +{p}_y^{\sigma (m)}\right)+\cdots +\frac{1}{2}{p}_x^{\sigma (m)}\left({p}_y^{\sigma (1)}+\cdots +{p}_y^{\sigma (m)}\right)\hfill \\ {}\hfill =\frac{1}{2}{p}_x^{\sigma (1)}+\frac{1}{2}{p}_x^{\sigma (2)}+\cdots +\frac{1}{2}{p}_x^{\sigma (m)}=\frac{1}{2}.\hfill \end{array} $$
  1. Case 2:

    m < n

$$ \begin{array}{c}\hfill \varphi \left( h\left({p}_x\right), h\left({p}_y\right)\right)=\sum_{i=1}^m\sum_{j=1}^n\frac{\gamma_{i x}}{\gamma_{i x}+{\gamma}_{j y}}{p}_{i x}{p}_{j y}\hfill \\ {}\hfill ={\sum}_{j=1}^n\frac{\gamma_x^{\sigma (1)}}{\gamma_x^{\sigma (1)}+{\gamma}_y^{\sigma (j)}}{p}_x^{\sigma (1)}{p}_y^{\sigma (j)}+\cdots +{\sum}_{j=1}^n\frac{\gamma_x^{\sigma (m)}}{\gamma_x^{\sigma (1)}+{\gamma}_y^{\sigma (j)}}{p}_x^{\sigma (m)}{p}_y^{\sigma (j)}\hfill \\ {}\hfill ={\sum}_{i=1}^m\frac{\gamma_x^{\sigma (i)}}{\gamma_x^{\sigma (i)}+{\gamma}_y^{\sigma (i)}}{p}_x^{\sigma (i)}{p}_y^{\sigma (i)}+\left(\frac{\gamma_x^{\sigma (1)}}{\gamma_x^{\sigma (1)}+{\gamma}_y^{\sigma (2)}}{p}_x^{\sigma (1)}{p}_y^{\sigma (2)}+\frac{\gamma_x^{\sigma (2)}}{\gamma_x^{\sigma (2)}+{\gamma}_y^{\sigma (1)}}{p}_x^{\sigma (2)}{p}_y^{\sigma (1)}\right)\hfill \\ {}\hfill +\cdots +\left(\frac{\gamma_x^{\sigma (1)}}{\gamma_x^{\sigma (1)}+{\gamma}_y^{\sigma (m)}}{p}_x^{\sigma (1)}{p}_y^{\sigma (m)}+\frac{\gamma_x^{\sigma (m)}}{\gamma_x^{\sigma (m)}+{\gamma}_y^{\sigma (1)}}{p}_x^{\sigma (m)}{p}_y^{\sigma (1)}\right)\hfill \\ {}\hfill +\cdots +\left(\frac{\gamma_x^{\sigma \left( m-1\right)}}{\gamma_x^{\sigma \left( m-1\right)}+{\gamma}_y^{\sigma (m)}}{p}_x^{\sigma \left( m-1\right)}{p}_y^{\sigma (m)}+\frac{\gamma_x^{\sigma (m)}}{\gamma_x^{\sigma (m)}+{\gamma}_y^{\sigma \left( m-1\right)}}{p}_x^{\sigma (m)}{p}_y^{\sigma \left( m-1\right)}\right)\hfill \\ {}\hfill +\left(\frac{\gamma_x^{\sigma (1)}}{\gamma_x^{\sigma (1)}+{\gamma}_y^{\sigma \left( m+1\right)}}{p}_x^{\sigma (1)}{p}_y^{\sigma \left( m+1\right)}+\cdots +\frac{\gamma_x^{\sigma (1)}}{\gamma_x^{\sigma (1)}+{\gamma}_y^{\sigma (n)}}{p}_x^{\sigma (1)}{p}_y^{\sigma (n)}\right)\hfill \\ {}\hfill +\cdots +\left(\frac{\gamma_x^{\sigma (m)}}{\gamma_x^{\sigma (m)}+{\gamma}_y^{\sigma \left( m+1\right)}}{p}_x^{\sigma (m)}{p}_y^{\sigma \left( m+1\right)}+\cdots +\frac{\gamma_x^{\sigma (m)}}{\gamma_x^{\sigma (m)}+{\gamma}_y^{\sigma (n)}}{p}_x^{\sigma (m)}{p}_y^{\sigma (n)}\right)\hfill \\ {}\hfill <\left(\frac{1}{2}{p}_x^{\sigma (1)}{p}_y^{\sigma (1)}+\cdots +\frac{1}{2}{p}_x^{\sigma (m)}{p}_y^{\sigma (m)}\right)+\left(\frac{1}{2}{p}_x^{\sigma (1)}{p}_y^{\sigma (2)}+\frac{1}{2}{p}_x^{\sigma (2)}{p}_y^{\sigma (1)}\right)+\cdots +\left(\frac{1}{2}{p}_x^{\sigma (1)}{p}_y^{\sigma (m)}+\frac{1}{2}{p}_x^{\sigma (m)}{p}_y^{\sigma (1)}\right)\hfill \\ {}\hfill +\cdots +\left(\frac{1}{2}{p}_x^{\sigma \left( m-1\right)}{p}_y^{\sigma (m)}+\frac{1}{2}{p}_x^{\sigma (m)}{p}_y^{\sigma \left( m-1\right)}\right)+\left(\frac{1}{2}{p}_x^{\sigma (1)}{p}_y^{\sigma \left( m+1\right)}+\cdots +\frac{1}{2}{p}_x^{\sigma (1)}{p}_y^{\sigma (n)}\right)\hfill \\ {}\hfill +\cdots +\left(\frac{1}{2}{p}_x^{\sigma (m)}{p}_y^{\sigma \left( m+1\right)}+\cdots +\frac{1}{2}{p}_x^{\sigma (m)}{p}_y^{\sigma (n)}\right)\hfill \\ {}\hfill =\frac{1}{2}\left({p}_x^{\sigma (1)}{p}_y^{\sigma (1)}+\cdots +{p}_x^{\sigma (1)}{p}_y^{\sigma (m)}+\cdots +{p}_x^{\sigma (1)}{p}_y^{\sigma (n)}\right)+\frac{1}{2}\left({p}_x^{\sigma (2)}{p}_y^{\sigma (1)}+\cdots +{p}_x^{\sigma (1)}{p}_y^{\sigma (m)}+\cdots +{p}_x^{\sigma (1)}{p}_y^{\sigma (n)}\right)\hfill \\ {}\hfill +\cdots +\frac{1}{2}\left({p}_x^{\sigma (m)}{p}_y^{\sigma (1)}+\cdots +{p}_x^{\sigma (m)}{p}_y^{\sigma (m)}+\cdots +{p}_x^{\sigma (m)}{p}_y^{\sigma (n)}\right)\hfill \\ {}\hfill =\frac{1}{2}{p}_x^{\sigma (1)}\left({p}_y^{\sigma (1)}+\cdots +{p}_y^{\sigma (n)}\right)+\cdots +\frac{1}{2}{p}_x^{\sigma (m)}\left({p}_y^{\sigma (1)}+\cdots +{p}_y^{\sigma (n)}\right)\hfill \\ {}\hfill =\frac{1}{2}{p}_x^{\sigma (1)}+\cdots +\frac{1}{2}{p}_x^{\sigma (n)}=\frac{1}{2}.\hfill \end{array} $$

A similar proof can be obtained when m > n.

The details of proofs (5) and (6) are omitted to save space.

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Jq. Multi-criteria Outranking Methods with Hesitant Probabilistic Fuzzy Sets. Cogn Comput 9, 611–625 (2017). https://doi.org/10.1007/s12559-017-9476-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-017-9476-2

Keywords

Navigation