Skip to main content
Log in

Positive Dynamical Systems: New Applications, Old Problems

  • Regular Papers
  • Control Theory and Applications
  • Published:
International Journal of Control, Automation and Systems Aims and scope Submit manuscript

Abstract

This review paper presents four relevant and very recent real-world application problems demanding developments of long-standing theoretical open problems in the field of positive systems research. Notably, the selected applications belong to very different fields of science and technology, ranging from biology and medicine to civil and electronic engineering. This clearly shows how pervasive positive systems are in mainstream research. Additionally, the theoretical issues stemming from these applications are the living proofs of how the apparently simple positivity constraint on the variables of interest makes the theory behind practical problems far from trivial, even for the linear case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Luenberger, Introduction to Dynamic Systems: Theory, Models, and Applications, Wiley, New York, 1979.

    MATH  Google Scholar 

  2. L. Farina and S. Rinaldi, Positive Linear Systems — Theory and Applications, Wiley, New York, 2000.

    Book  MATH  Google Scholar 

  3. P. G. Coxon and H. Shapiro, “Positive input reachability and controllability of positive systems,” Linear Algebra and Its Applications, vol. 94, pp. 35–53, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. N. P. Murthy, “Controllability of a linear positive dynamic system,” International Journal of Systems Science, vol. 17, no. 1, pp. 49–54, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Ohta, H. Maeda, and S. Kodama, “Reachability, observability and realizability of continuous-time positive systems,” SIAM Journal on Control and Optimization, vol. 22, pp. 171–180, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. G. Rumchev and D. J. G. James, “Controllability of positive linear discrete-time systems,” International Journal of Control, vol. 50, pp. 845–857, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. de Leenheer and D. Aeyels, “Stabilization of positive linear systems,” Systems & Control Letters, vol. 44, pp. 259–271, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. G. Rumchev and D. J. G. James, “Spectral characterization and pole assignment for positive linear discrete-time systems,” International Journal of Systems Science, vol. 26, pp. 295–312, 1995.

    MATH  Google Scholar 

  9. J. W. Nieuwenhuis, “When to call a linear system nonnegative,” Linear Algebra and its Applications, vol. 281, pp. 43–58., 1998.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. E. Valcher, “Nonnegative linear systems in the behavioral approach: the autonomous case,” Linear Algebra and its Applications, vol. 319, pp. 147–162, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. P. M. H. Heemels, S. J. L. van Eijnghoven, and A. A. Stoorvogel, “Linear quadratic regulator problem with positive control,” International Journal of Control, vol. 70, pp. 551–578, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. De Santis and L. Farina, “Identification of positive linear systems with Poisson output transformation,” Automatica, vol. 38, pp. 861–868, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. D. O. Anderson, M. Deistler, L. Farina, and L. Benvenuti, “Nonnegative realization of a linear system with nonnegative impulse response,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 43, pp. 134–142, 1996.

    Article  MathSciNet  Google Scholar 

  14. L. Benvenuti and L. Farina, “A tutorial on the positive realization problem,” IEEE Transactions on Automatic Control, vol. 49, pp. 651–664, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Farina, “On the existence of a positive realization,” Systems & Control Letters, vol. 28, pp. 219–226, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  16. K.-H. Foerster and B. Nagy, “Nonnegative realizations of matrix transfer functions,” Linear Algebra and its Applications, vol. 311, pp. 107–129, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Kitano and H. Maeda, “Positive realization of discrete-time systems by geometric approach,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, pp. 308–311, 1998.

    Article  MathSciNet  Google Scholar 

  18. H. Maeda and S. Kodama, “Positive realization of difference equation,” IEEE Transactions on Circuits and Systems, vol. 28, pp. 39–47, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Blanchini, P. Colaneri, and M. E. Valcher, “Switched positive linear systems,” Foundations and Trends in Systems and Control, vol. 2, pp. 101–273, 2015.

    Article  Google Scholar 

  20. P. Paci, G. Fiscon, and F. Conte …, E. K. Silverman, and L. Farina, “Integrated transcriptomic correlation network analysis identifies COPD molecular determinants,” Scientific Reports, vol. 10, Article number 3361, 2020.

  21. M. C. Palumbo, L. Farina, and P. Paci, “Kinetics effects and modeling of mRNA turnover,” Wiley Interdisciplinary Reviews: RNA, vol. 6, 327–336, 2015.

    Article  Google Scholar 

  22. Y. Y. Liu, J. J. Slotine, and A. L. Barabasi, “Controllability of complex networks,” Nature, vol. 473, pp. 167–173, 2011.

    Article  Google Scholar 

  23. A. Sharma, A. Halu, J. L. Decano, M. Padi, Y. Y. Liu, R. B. Prasad, J. Fadista, M. Santolini, J. Menche, S. T. Weiss, M. Vidal, E. K. Silvermann, M. Aikawa, A. L. Barabasi, L. Groop, and J. Loscalzo, “Controllability is an islet specific regulatory network identifies the transcriptional factor NFATC4, which regulates Type 2 Diabetes associated genes,” Nature systems Biology and Applications, vol. 4, Article number 25, 2018.

  24. A. Vinayagam, T. E. Gibson, H. J. Lee, B. Yilmazel, C. Roesel, Y. Hu, Y. Kwon, A. Sharma, Y. Y. Liu, N. Perrimon, and A. L. Barabasi, “Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets,” PNAS, vol. 113, pp. 4976–4981, 2016.

    Article  Google Scholar 

  25. A. Sharma, C. Cinti, and E. Capobianco, “Multiple network guided target controllability in phenotypically characterized osteosarcoma: role of tumor microenvironment,” Frontiers in Immunology, vol. 8, 918, 2017.

    Article  Google Scholar 

  26. A. Li, S. P. Cornelius, Y. Y. Liu, L. Wang, and A. L. Barabasi, “The fundamental advantages of temporal networks,” Science, vol. 358, pp. 1042–1046, 2017.

    Article  Google Scholar 

  27. Y. Y. Liu, J. J. Slotine, and A. L. Barabasi, “Observability of complex systems,” PNAS, vol. 110, pp. 2460–2465, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. P. Fanti, B. Maione, and B. Turchiano, “Controllability of linear single-input positive discrete-time systems,” International Journal of Control, vol. 50, pp. 2523–2542, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. E. Valcher, “Controllability and reachability criteria for discrete time positive systems,” International Journal of Control, vol. 65, pp. 511–536, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Benvenuti and L. Farina, “The geometry of the reachability set for linear discrete—time systems with positive controls,” SIAM Journal on Matrix Analysis and Applications, vol. 28, pp. 306–325, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Maeda, S. Kodama, and F. Kajiya, “Compartmental system analysis: Realization of a class of linear systems with physical constraints,” Transactions on Circuits and Systems, vol. 24, pp. 8–14, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber—optic lattice signal processing,” Proceedings of the IEEE, vol. 72, pp. 909–930, 1984.

    Article  Google Scholar 

  33. A. Gersho and B. Gopinath, “Charge-routing networks,” IEEE Transactions on Circuits and Systems, vol. 26, pp. 81–92, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Benvenuti, “Minimal positive realizations: A survey,” Automatica, vol. 143, Article number 110422, 2022.

  35. L. Benvenuti and L. Farina, “A note on minimality of positive realizations,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, pp. 676–677, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Farina, “Minimal order realizations for a class of positive linear systems,” Journal of the Franklin Institute, vol. 333B, pp. 893–900, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Halmschlager and M. Matolcsi, “Minimal positive realizations for a class of transfer functions,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, pp. 177–180, 2005.

    Google Scholar 

  38. B. Nagy and M. Matolcsi, “Minimal positive realizations of transfer functions with nonnegative multiple poles,” IEEE Transactions on Automatic Control, vol. 50, pp. 1447–1450, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  39. F. Cacace, L. Farina, A. Germani, and C. Manes, “Internally positive representation of a class of continuous time systems,” IEEE Transactions on Automatic Control, vol. 57, pp. 3158–3163, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Benvenuti, L. Farina, B. D. O. Anderson, and F. de Bruyne, “Minimal positive realizations of transfer functions with positive real poles,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, pp. 1370–1377, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  41. L. Benvenuti, “Minimal positive realizations of transfer functions with real poles,” IEEE Transactions on Automatic Control, vol. 58, pp. 1013–1017, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Benvenuti, “A lower bound on the dimension of minimal positive realizations for discrete time systems,” System & Control Letters, vol. 135, 104595, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  43. L. Benvenuti, “An upper bound on the dimension of minimal positive realizations for discrete time systems,” System & Control Letters, vol. 145, 104779, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  44. C. Hadjicostis, “Bounds on the size of minimal nonnegative realization for discrete-time lti systems,” Systems & Control Letters, vol. 37, pp. 39–43, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  45. B. Nagy and M. Matolcsi, “A lowerbound on the dimension of positive realizations,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, pp. 782–784, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  46. P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE Transactions on Automatic Control, vol. 38, pp. 195–207, 1993.

    Article  MathSciNet  Google Scholar 

  47. J. Lunze, “Adaptive cruise control with guaranteed collision avoidance,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, pp. 1897–1907, 2019.

    Article  Google Scholar 

  48. S. Feng, Y. Zhang, S. E. Li, Z. Cao, H. X. Liu, and L. Li, “String stability for vehicular platoon control: Definitions and analysis methods,” Annual Reviews in Control, vol. 47, pp. 81–97, 2019.

    Article  MathSciNet  Google Scholar 

  49. D. Swaroop and J. K. Hedrick, “String stability of interconnected systems,” IEEE Transactions on Automatic Control, vol. 41, pp. 349–357, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Ploeg, B. T. Scheepers, E. Van Nunen, N. van de Wouw, and H. Nijmeijer, “Design and experimental evaluation of cooperative adaptive cruise control,” Proc. of the 14th International IEEE Conference on Intelligent Transportation Systems, pp. 260–265, 2011.

  51. P. Seiler, A. Pant, and K. Hedrick, “Disturbance propagation in vehicle strings,” IEEE Transactions on Automatic Control, vol. 49, pp. 1835–1841, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Schwab and J. Lunze, “Design of platooning controllers that achieve collision avoidance by external positivity,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14883–14892, 2022.

    Article  Google Scholar 

  53. Y. Liu and P. H. Bauer, “Fundamental properties of non-negative impulse response filters,” IEEE Transactions on Circuits and Systems-I, vol. 57, pp. 1338–1347, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  54. K. J. Astrom, “A robust sampled regulator for stable systems with monotone step responses,” Automatica, vol. 16, pp. 313–315, 1980.

    Article  MATH  Google Scholar 

  55. N. G. Meadows, “In-line pole-zero conditions to ensure non-negative impulse response for a class of filter systems,” International Journal of Control, vol. 15, pp. 1033–1039, 1972.

    Article  MATH  Google Scholar 

  56. S. Darbha and S. P. Bhattacharyya, “Controller synthesis for sign-invariant impulse response,” IEEE Transactions on Automatic Control, vol. 47, pp. 1346–1351, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  57. Y. Liu and P. H. Bauer, “Sufficient conditions for non-negative impulse response of arbitrary-order systems,” Proc. of the IEEE Asia Pacific Conference on Circuits and Systems, pp. 1410–1413, 2008.

  58. A. Rachid, “Some conditions on zeros to avoid step-response extrema,” IEEE Transactions on Automatic Control, vol. 40, pp. 1501–1503, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  59. M. El-Khoury, O. D. Crisalle, R. Longchamp, “Influence of zero locations on the number of step-response extrema,” Automatica, vol. 29, pp. 1571–1574, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  60. R. Drummond, M. C. Turner, and S. R. Duncan, “External positivity of linear systems by weak majorisation,” Proc. of the American Control Conference, pp. 5191–5196, 2019.

  61. M. de la Sen, “On the external positivity of linear time-invariant dynamic systems,” IEEE Transactions on Circuits and Systems: II Express Briefs, vol. 55, pp. 188–192, 2008.

    Google Scholar 

  62. A. Schwab and J. Lunze, “How to design externally positive feedback loops — an open problem of control theory,” Automatisierungstechnik, vol. 68, pp. 301–311, 2020.

    Article  Google Scholar 

  63. E. Fornasini and M. E. Valcher, “On the spectral combinatorial structure od 2D positive systems,” Linear Algebra and Its Applications, vol. 245, pp. 223–258, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  64. L. V. Hien and H. Trinh, “Observers design for 2-D positive time-delay Roesser systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, pp. 476–480, 2018.

    Google Scholar 

  65. T. Kaczorek, Positive 1D and 2D systems, Springer, New York, 2002.

    Book  MATH  Google Scholar 

  66. W. M. Haddad and V. Chellaboina, “Stability theory for nonnegative and compartmental dynamical systems with time delay,” Systems & Control Letters, vol. 51, pp. 335–361, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  67. X. Liu, W. Yu, and L. Wang, “Stability analysis for continuous-time positive systems with time-varying delays,” IEEE Transactions on Automatic Control, vol. 55, pp. 1024–1028, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  68. D. Angeli and E. D. Sontag, “Monotone control systems,” IEEE Transactions on Automatic Control, vol. 48, pp. 1684–1698, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  69. M. W. Hirsch, “Systems of Differential Equations Which Are Competitive or Cooperative: I. Limit Sets,” SIAM Journal on Mathematical Analysis, vol. 13, pp. 167–179, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  70. M. W. Hirsch, “Systems of differential equations that are competitive or cooperative II: Convergence almost everywhere,” SIAM Journal on Mathematical Analysis, vol. 16, pp. 423–439, 1985.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Farina.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Luca Benvenuti received his M.Sc. degree in electrical engineering and a Ph.D. degree in systems engineering from the Sapienza University of Rome, in 1992 and 1995, respectively. He is currently a Professor at the same university. His research interests are in the areas of control of nonlinear systems, analysis and control of hybrid systems, positive linear systems, and modeling and optimization problems for nutrition.

Lorenzo Farina received his M.Sc. degree in electrical engineering and a Ph.D. degree in systems engineering from the Sapienza University of Rome, in 1992 and 1997, respectively. He is currently a Professor at the same university. His research interests include bioinformatics, computational biology, and network medicine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benvenuti, L., Farina, L. Positive Dynamical Systems: New Applications, Old Problems. Int. J. Control Autom. Syst. 21, 837–844 (2023). https://doi.org/10.1007/s12555-021-0563-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12555-021-0563-5

Keywords

Navigation