Skip to main content
Log in

Methods and application of coherent X-ray diffraction imaging of noncrystalline particles

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Microscopic imaging techniques have been developed to visualize events occurring in biological cells. Coherent X-ray diffraction imaging is one of the techniques applicable to structural analyses of cells and organelles, which have never been crystallized. In the experiment, a single noncrystalline particle is illuminated by an X-ray beam with almost complete spatial coherence. The structure of the particle projected along the direction of the beam is, in principle, retrieved from a finely recorded diffraction pattern alone by using iterative phase-retrieval algorithms. Here, we describe fundamental theory and experimental methods of coherent X-ray diffraction imaging and the recent application in structural studies of noncrystalline specimens by using X-rays available at Super Photon Ring of 8-Gev and SPring-8 Angstrom Compact Free Electron Laser in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36

    Article  CAS  PubMed  Google Scholar 

  • Al-Amoudi A, Studer D, Dubochet J (2005) Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J Struct Biol 150:109–121

    Article  CAS  PubMed  Google Scholar 

  • Als-Nielsen J, McMorrow D (2011) Elements of modern X-ray physics. Wiley, West Sussex

    Book  Google Scholar 

  • Aquila A et al (2015) The linac coherent light source single particle imaging road map. Struct Dyn 2:041701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barakat R, Newsam G (1984) Necessary conditions for a unique solution to two dimensional phase recovery. J Math Phys 25:3190–3193

    Article  Google Scholar 

  • Betzig E, Patterson GH et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Blow DM, Crick FH (1959) The treatment of errors in the isomorphous replacement method. Acta Cryst 12:794–802

    Article  CAS  Google Scholar 

  • Born M, Wolf E (1999) Principles of optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Carroni M, Saibil HR (2016) Cryo electron microscopy to determine the structure of macromolecular complexes. Methods 95:78–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman HN et al (2006a) Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat Phys 2:839–843

    Article  CAS  Google Scholar 

  • Chapman HN et al (2006b) High-resolution ab initio three-dimensional X-ray diffraction microscopy. J Opt Soc Am A 23:1179–1200

    Article  Google Scholar 

  • Chen C-C, Miao J, Wang CW, Lee TK (2007) Application of optimization technique to noncrystalline X-ray diffraction microscopy: guided hybrid input-output method. Phys Rev B 76:064113

    Article  CAS  Google Scholar 

  • Curwood EK, Quiney HM, Nugent KA (2013) Determining electronic damage to biomolecular structures in X-ray free-electron-laser imaging experiments. Phys Rev A 87:053407

    Article  CAS  Google Scholar 

  • Dinapoli R et al (2011) EIGER: next generation single photon counting detector for X-ray applications. Nucl Inst Methods Phys Res A 650:79–83

    Article  CAS  Google Scholar 

  • Drenth J (2007) Principles of protein X-ray crystallography. Springer, New York

    Google Scholar 

  • Dubochet J et al (1988) Cryo-electron microscopy of verified specimens. Q Rev Biophys 21:129–228

    Article  CAS  PubMed  Google Scholar 

  • Ekeberg T et al (2015) Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Phys Rev Lett 114:098102

    Article  PubMed  CAS  Google Scholar 

  • Elser V (2003) Phase retrieval by iterated projections. J Opt Soc Am A 20:40–55

    Article  Google Scholar 

  • Fan J, Sun Z et al (2015) Quantitative imaging of single unstained magnetotactic bacteria by coherent X-ray diffraction microscopy. Anal Chem 87:5849–5853

    Article  CAS  PubMed  Google Scholar 

  • Fienup JR (1978) Reconstruction of an object from the modulus of its Fourier transform. Opt Lett 3:27–29

    Article  CAS  PubMed  Google Scholar 

  • Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21:2758–2769

    Article  CAS  PubMed  Google Scholar 

  • Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies. Oxford University Press, Oxford

    Book  Google Scholar 

  • Frank J, Penczek P, Grassucci R, Srivastava S (1991) Three-dimensional reconstruction of the 70S Escherichia coli ribosome in ice: the distribution of ribosomal DNA. J Cell Biol 115:597–605

    Article  CAS  PubMed  Google Scholar 

  • Gallagher-Jones M et al (2014) Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging. Nat Commun 5:3798

    Article  CAS  PubMed  Google Scholar 

  • Garman EF, Owen RL (2006) Cryocooling and radiation damage in macromolecular crystallography. Acta Cryst D62:32–47

    CAS  Google Scholar 

  • Garman EF, Schneider TR (1997) Macromolecular crystallography. J Appl Crystallogr 30:211–237

    Article  Google Scholar 

  • Gerchberg RW, Saxton WO (1972) A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35:237–246

    Google Scholar 

  • Gibson LF, Khoury JT (1986) Storage and survival of bacteria by ultra-freeze. Lett Appl Microbiol 3:127–129

    Article  Google Scholar 

  • Giewekemeyer K et al (2010) Quantitative biological imaging by ptychographic X-ray diffraction microscopy. Proc Natl Acad Sci U S A 107:529–534

    Article  CAS  PubMed  Google Scholar 

  • Giewekemeyer K et al (2015) Tomography of a cryo-immobilized yeast cell using ptychographic coherent X-ray diffraction imaging. Biophys J 109:1986–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros MAL, McDermott G, Larabell CA (2005) X-ray tomography of whole cells. Curr Opin Struct Biol 15:593–600

    Article  PubMed  CAS  Google Scholar 

  • Hantke MF et al (2014) High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nat Photonics 8:943–949

    Article  CAS  Google Scholar 

  • Hattanda S, Shioya H, Maehara Y, Gohara K (2014) K-means clustering for support construction in diffractive imaging. J Opt Soc Am A 31:470–474

    Article  Google Scholar 

  • Hell SW, Kroug M (1995) Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B Lasers Opt 60:495–497

    Article  Google Scholar 

  • Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193

    Article  CAS  PubMed  Google Scholar 

  • Herskowitz I (1988) Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 52:536–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata K et al (2014) Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 11:734–736

    Article  CAS  PubMed  Google Scholar 

  • Hosseinizadeh A et al (2014) High-resolution structure of viruses from random diffraction snapshots. Philos Trans R Soc B 369:20130326

    Article  CAS  Google Scholar 

  • Howells MR et al (2009) An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J Electron Spectrosc Relat Phenom 170:4–12

    Article  CAS  Google Scholar 

  • Huang X et al (2009) Soft X-ray diffraction microscopy of a frozen hydrated yeast cell. Phys Rev Lett 103:198101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang X et al (2010) Incorrect support and missing center tolerances of phasing algorithms. Opt Express 18:26441–26449

    Article  PubMed  Google Scholar 

  • Hubbell JH, Seltzer SM (2017) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest. https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients

  • Ibel K, Stuhrmann HB (1975) Comparison of neutron and X-ray scattering of dilute myoglobin solutions. J Mol Biol 93:255–265

    Article  CAS  PubMed  Google Scholar 

  • Inubushi Y et al (2012) Determination of the pulse duration of an X-ray free electron laser using highly resolved single-shot spectra. Phys Rev Lett 109:144801

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T et al (2012) A compact X-ray free-electron laser emitting in the sub-Ångström region. Nat Photonics 6:540–544

    Article  CAS  Google Scholar 

  • Jiang H et al (2010) Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proc Natl Acad Sci U S A 107:11234–11239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joti Y et al (2015) Data acquisition system for X-ray free-electron laser experiments at SACLA. J Synchrotron Radiat 22:571–576

    Article  PubMed  PubMed Central  Google Scholar 

  • Kameda H et al (2017) Common structural features of toxic intermediates from α-synuclein and GroES fibrillogenesis detected using cryogenic coherent X-ray diffraction imaging. J Biochem (Tokyo) 161:55–65

    Article  CAS  Google Scholar 

  • Kameshima T et al (2014) Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments. Rev Sci Instrum 85:033110

    Article  PubMed  CAS  Google Scholar 

  • Kassemeyer S et al (2012) Femtosecond free-electron laser X-ray diffraction data sets for algorithm development. Opt Express 20:4149–4158

    Article  PubMed  Google Scholar 

  • Kassemeyer S et al (2013) Optimal mapping of X-ray laser diffraction patterns into three dimensions using routing algorithms. Phys Rev E 88:042710

    Article  CAS  Google Scholar 

  • Kim C et al (2014) Resolution enhancement in coherent X-ray diffraction imaging by overcoming instrumental noise. Opt Express 22:29161–19169

    Article  PubMed  Google Scholar 

  • Kimura T et al (2014) Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nat Commun 5:3052

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Sekiguchi Y, Takayama Y, Oroguchi T, Nakasako M (2014) Dark-field phase retrieval under the constraint of the Friedel symmetry in coherent X-ray diffraction imaging. Opt Express 22:27892–27909

    Article  PubMed  Google Scholar 

  • Kobayashi A et al (2016a) TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA. Rev Sci Instrum 87:053109

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A et al (2016b) Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA. J Synchrotron Radiat 23:975–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi A, Sekiguchi Y, Oroguchi T, Yamamoto M, Nakasako M (2018a) Shot-by-shot characterization of focused X-ray free electron laser pulses. Sci Rep 8:831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi A et al (2018b) Diffraction apparatus and procedure in tomography X-ray diffraction imaging for biological cells at cryogenic temperature using synchrotron X-ray radiation. J Synchrotron Radiat 25:1803–1818

    Article  CAS  PubMed  Google Scholar 

  • Kodama W, Nakasako M (2011) Application of a real-space three-dimensional image reconstruction method in the structural analysis of noncrystalline biological macromolecules enveloped by water in coherent X-ray diffraction microscopy. Phys Rev E84:021902

    Google Scholar 

  • Kuroiwa T et al (eds) (2007) Cyanidioschyzon merolae. Springer, Tokyo

    Google Scholar 

  • Larabell CA, Nugent KA (2010) Imaging cellular architecture with X-rays. Curr Opin Struct Biol 20:623–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leshem B et al (2016) Direct single-shot phase retrieval from the diffraction pattern of separated objects. Nat Commun 7:10820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima E et al (2009) Cryogenic X-ray diffraction microscopy for biological samples. Phys Rev Lett 103:198102

    Article  PubMed  CAS  Google Scholar 

  • Loh ND et al (2010) Cryptomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns. Phys Rev Lett 104:225501

    Article  CAS  PubMed  Google Scholar 

  • Loh ND et al (2012) Fractral morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 486:513–517

    Article  CAS  PubMed  Google Scholar 

  • Lučić V, Rigort A, Baumeister W (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202:407–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Le Cam LM, Neyman J (eds) Proceedings of the fifth Berkley symposium on mathematical statistics and probability. University of California Press, Berkley, pp 281–297

    Google Scholar 

  • Manukyan A, Abraham L, Dungrawala H, Schneider BL (2011) Synchronization of yeast. Methods Mol Biol 761:173–200

    Article  CAS  PubMed  Google Scholar 

  • Marchesini S, et al (2003) X-ray image reconstruction from a diffraction pattern alone. Phys Rev B 68: 140101(R)

  • Martin AV et al (2012a) Noise-robust coherent diffractive imaging with a single diffraction pattern. Opt Express 20:16650–16661

    Article  Google Scholar 

  • Martin AV et al (2012b) Femtosecond dark-field imaging with an X-ray free electron laser. Opt Express 20:13501–13512

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Sayre D, Chapman HN (1998) Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J Opt Soc Am A 15:1662–1669

    Article  Google Scholar 

  • Miao J, Charalambous P, Kirz J, Sayre D (1999) Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400:342–344

    Article  CAS  Google Scholar 

  • Miao J, Hodgson KO, Sayre D (2001) An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images. Proc Natl Acad Sci U S A 98:6641–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao J et al (2002) High resolution 3D X-ray diffraction microscopy. Phys Rev Lett 89:088303

    Article  PubMed  CAS  Google Scholar 

  • Miao J et al (2003a) Imaging whole Escherichia coli bacteria by using single-particle X-ray diffraction. Proc Natl Acad Sci U S A 100:110–112

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Ishikawa T, Anderson EH, Hodgson KO (2003b) Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method. Phys Rev B 67:174104

    Article  CAS  Google Scholar 

  • Miao J et al (2006) Three-dimensional GaN-Ga2O3 core shell structure revealed by X-ray diffraction microscopy. Phys Rev Lett 97:215503

    Article  PubMed  CAS  Google Scholar 

  • Miao J, Ishikawa T, Robinson IK, Murnane MM (2015) Beyond crystallography: diffractive imaging using coherent X-ray light source. Science 348:530–535

    Article  CAS  PubMed  Google Scholar 

  • Murphy DB, Davidson MW (2012) Fundamentals of light microscopy and electronic imaging. Wiley-Blackwell, New Jersey

    Book  Google Scholar 

  • Murshudov GN et al (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst D 67:355–367

    Article  CAS  Google Scholar 

  • Nakasako M (2018) X-ray diffraction imaging of biological cells. Springer, Tokyo

    Book  Google Scholar 

  • Nakasako M et al (2013) KOTOBUKI-1 apparatus for cryogenic coherent X-ray diffraction imaging. Rev Sci Instrum 84:093705

    Article  PubMed  CAS  Google Scholar 

  • Nam D et al (2013) Imaging fully hydrated whole cells by coherent X-ray diffraction microscopy. Phys Rev Lett 110:098103

    Article  PubMed  CAS  Google Scholar 

  • Nam D et al (2016) Fixed target single-shot imaging of nanostructures using thin solid membranes at SACLA. J Phys B 49:034008

    Article  CAS  Google Scholar 

  • Nass K et al (2015) Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J Synchrotron Radiat 22:225–238

    Article  CAS  PubMed  Google Scholar 

  • Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757

    Article  CAS  PubMed  Google Scholar 

  • Nishino Y, Takahashi Y, Imamoto N, Ishikawa T, Maeshima K (2009) Three-dimensional visualization of a human chromosome using coherent X-ray diffraction. Phys Rev Lett 102:018101

    Article  PubMed  CAS  Google Scholar 

  • Oide M, Sekiguchi Y, Fukuda A, Okajima K, Oroguchi T, Nakasako M (2018) Classification of ab initio models of proteins restored from small-angle X-ray scattering. J Synchrotron Rad 25:1379–1388

  • Oroguchi T, Nakasako M (2013) Three-dimensional structure determination protocol for noncrystalline biomolecules using x-ray free-electron laser diffraction imaging. Phys Rev E 87:022712

    Article  CAS  Google Scholar 

  • Oroguchi T et al (2015) Cryogenic coherent X-ray diffraction imaging for biological non-crystalline particles using the KOTOBUKI-1 diffraction apparatus at SACLA. J Phys B 48:184003

    Article  CAS  Google Scholar 

  • Oroguchi T, Yoshidome T, Yamamoto T, Nakasako M (2018) Growth of cuprous oxide particles in liquid-phase synthesis investigated by X-ray laser diffraction. Nano Lett 18:5192–5197

    Article  CAS  PubMed  Google Scholar 

  • Park HJ et al (2013) Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers. Opt Express 21:28729–28742

    Article  PubMed  Google Scholar 

  • Pettersen EF et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Raines KS et al (2010) Three-dimensional structure determination from a single view. Nature 463:214–217

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JA, Xu R, Chen C-C, Zou Y, Miao J (2013) Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. J Appl Crystallogr 46:312–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez JA et al (2015) Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells. IUCrJ 2:575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333:721–745

    Article  CAS  PubMed  Google Scholar 

  • Sayre D (1952) Some implications of a theorem due to Shannon. Acta Cryst 5:843

    Article  Google Scholar 

  • Sayre D (1980) Prospects for long-wavelength X-ray microscopy and diffraction. In: Schlenker M, Finke M et al (eds) Imaging processes and coherence in physics. Springer, New York, pp 229–235

    Chapter  Google Scholar 

  • Scheres SHW et al (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4:27–29

    Article  CAS  PubMed  Google Scholar 

  • Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider G et al (2010) Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat Methods 7:985–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwander P, Fung R, Ourmazd A (2014) Conformations of macromolecules and their complexes from heterogeneous datasets. Philos Trans R Soc B 369:20130567

    Article  CAS  Google Scholar 

  • Seibert MM et al (2011) Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470:78–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi Y, Oroguchi T, Takayama T, Nakasako M (2014a) Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA. J Synchrotron Radiat 21:600–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi Y et al (2014b) IDATEN and G-SITENNO: GUI-assisted software for coherent X-ray diffraction imaging experiments and data analyses at SACLA. J Synchrotron Radiat 21:1378–1383

    Article  PubMed  Google Scholar 

  • Sekiguchi Y, Oroguchi T, Nakasako M (2016) Classification and assessment of retrieved electron density maps in coherent X-ray diffraction imaging using multivariate analysis. J Synchrotron Radiat 23:312–323

    Article  PubMed  Google Scholar 

  • Sekiguchi Y, Hashimoto S, Kobayashi A, Oroguchi T, Nakasako M (2017) A protocol for searching the most probable phase-retrieved maps in coherent X-ray diffraction imaging by exploiting the relationship between convergence of the retrieved phase and success of calculation. J Synchrotron Radiat 24:1024–1038

    Article  CAS  PubMed  Google Scholar 

  • Shapiro D et al (2005) Biological imaging by soft x-ray diffraction microscopy. Proc Natl Acad Sci U S A 102:15343–15346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C et al (2008) Quantitative imaging of single, unstained viruses with coherent X-rays. Phys Rev Lett 101:158101

    Article  PubMed  CAS  Google Scholar 

  • Song C et al (2014) Analytic 3D imaging of mammalian nucleus at nanoscale using coherent X-rays and optical fluorescence microscopy. Biophys J 107:1074–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svergun DI, Koch MHJ, Timmins PA, May RP (2013) Small angle X-ray and neutron scattering from solutions of biological macromolecules. Oxford University Press, Oxford

    Book  Google Scholar 

  • Takahashi Y et al (2010) Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy. Nano Lett 10:1922–1926

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y et al (2011) Towards high-resolution ptychographic X-ray diffraction microscopy. Phys Rev E 83:214109

    Article  CAS  Google Scholar 

  • Takahashi Y et al (2013) Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses. Nano Lett 13:6028–6032

    Article  CAS  PubMed  Google Scholar 

  • Takayama Y, Nakasako M (2011) A few low-frequency normal modes predominantly contribute to conformational response of hen egg white lysozyme in the tetragonal crystal to variations of molecular packing controlled by environmental humidity. Biophys Chem 159:237–246

    Article  CAS  PubMed  Google Scholar 

  • Takayama Y, Nakasako M (2012) Humidity-controlled preparation of frozen-hydrated biological samples for cryogenic coherent X-ray diffraction microscopy. Rev Sci Instrum 83:054301

    Article  PubMed  CAS  Google Scholar 

  • Takayama Y et al (2015a) Coherent X-ray diffraction imaging of chloroplasts from Cyanidioschyzon merolae by using X-ray free electron laser. Plant Cell Physiol 56:1272–1286

    Article  CAS  PubMed  Google Scholar 

  • Takayama Y, Maki-Yonekura S, Oroguchi T, Nakasako M, Yonekura K (2015b) Signal enhancement and Patterson-search phasing for high-spatial-resolution coherent X-ray diffraction imaging of biological objects. Sci Rep 5:8074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamasaku K et al (2001) SPring-8 RIKEN beamline III for coherent X-ray optics. Nucl Instrum Methods Phys Res Sect A 467–468:686–689

    Article  Google Scholar 

  • Tono K et al (2013) Beamline, experimental stations and photon beam diagnostics for the hard X-ray free electron laser of SACLA. New J Phys 15:083035

    Article  Google Scholar 

  • Uchida M et al (2011) Quantitative analysis of yeast internal architecture using soft X-ray tomography. Yeast 28:227–236

    Article  CAS  PubMed  Google Scholar 

  • van der Schot G et al (2015) Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat Commun 6:5704

    Article  PubMed  CAS  Google Scholar 

  • van Heel M, Frank J (1981) Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicrosc 6:187–194

    Google Scholar 

  • van Heel M, Schatz M (2005) Fourier shell correlation threshold criteria. J Struct Biol 151:250–262

    Article  PubMed  CAS  Google Scholar 

  • Wäldchen S, Lehmann J, Klein T, van de Linde S, Sauer M (2015) Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep 5:15348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Webb RH (1996) Confocal optical microscopy. Rep Prog Phys 59:421–471

    Article  Google Scholar 

  • Weierstall U, Spence JCH, Doak RB (2012) Injector for scattering measurements on fully solvated biospecies. Rev Sci Instrum 83:035108

    Article  CAS  PubMed  Google Scholar 

  • Xu R et al (2014) Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses. Nat Commun 5:4061

    Article  CAS  PubMed  Google Scholar 

  • Yoon CH et al (2011) Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering. Opt Express 19:16542–16549

    Article  PubMed  Google Scholar 

  • Yoshida R et al (2015) Extending the potential of X-ray free-electron lasers to industrial applications―an initiatory attempt at coherent diffractive imaging on car-related nanomaterials. J Phys B 48:244008

    Article  CAS  Google Scholar 

  • Yoshidome T, Oroguchi T, Nakasako M, Ikeguchi M (2015) Classification of projection images of proteins with structural polymorphism by manifold: a simulation study for X-ray free-electron laser diffraction imaging. Phys Rev E 92:032710

    Article  CAS  Google Scholar 

  • Yumoto H et al (2013) Focusing of X-ray free-electron laser pulses with reflective optics. Nat Photonics 7:43–47

    Article  CAS  Google Scholar 

  • Ziaja B et al (2012) Limitations of coherent diffractive imaging of single objects due to their damage by intense X-ray radiation. New J Phys 14:115015

    Article  CAS  Google Scholar 

  • Zieve GW, Turnbull D, Mullins JM, McIntosh JR (1980) Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Exp Cell Res 126:397–405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Yoshiki Kohmura for his help in synchrotron cXDI experiments at SPring-8. The authors also thank to Dr. Kensuke Tono, Dr. Takashi Kameshima, Dr. Yasumasa Joti, Mr. Tetsukon Kim, and the members of the Engineering Team of SACLA for their help in the XFEL-cXDI experiments. One of the authors also acknowledges the graduate students of his laboratory, Dr. Yuki Sekiguchi, Mr. Takahiro Yamamoto, Ms. Saki Hashimoto, Mr. Asahi Fukuda, Mr. Wataru Kodama, and Mr. Keita Sakamoto.

Funding

The construction and development of the two diffraction apparatus was supported by a grant for X-ray Free Electron Laser Key Technology and the X-ray Free Electron Laser Priority Strategy Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan. In addition, the development of specimen preparation techniques and data analysis software was supported by grants to the author from the Japan Science Promotion Society (Nos. jp11558086, jp17654084, jp1920402, jp22244054, jp24654140, jp16H02218) and by grants to the author from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Nos. jp10157202, jp15076210, jp23120525, jp25120725, jp17H05891). The cXDI experiments at BL29XUL of SPring-8 were performed at the RIKEN beamline of SPring-8 (proposal Nos. 20090097, 20100035, 20110006, 20140096, 20150098, 20160084, 20170017, 20180070, and 20190005). The XFEL-cXDI experiments were carried out at BL3 of SACLA (proposal Nos. 2012A8005, 2012B8037, 2013A8043, 2013B8049, 2014A8033, 2014B8052, 2015A8051, 2015B8049, 2016A8048, 2016B8064, 2017A8015, and 2017B8003). The PR calculations and multivariate analyses were performed using the mini-K supercomputer system at the SACLA facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Nakasako.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakasako, M., Kobayashi, A., Takayama, Y. et al. Methods and application of coherent X-ray diffraction imaging of noncrystalline particles. Biophys Rev 12, 541–567 (2020). https://doi.org/10.1007/s12551-020-00690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-020-00690-9

Keywords

Navigation