Skip to main content
Log in

Innovative aspects of protein stability in ionic liquid mixtures

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Mixtures of ionic liquids (ILs) have attracted our attention because of their extraordinary performances in extraction technologies and in absorbing large amount of CO2 gas. It has been observed that when two or more ILs are mixed in different proportions, a new solvent is obtained which is much better than that of each component of ILs from which the mixture is obtained. Within a mixture of ILs, several unidentified interactions occur among several ions which give rise to unique solvent properties to the mixture. Herein, in this review, we have highlighted the utilization of the advantageous properties of the IL mixtures in protein stability studies. This approach is exceptional and opens new directions to the use of ILs in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Attri P, Venkatesu P, Kumar A (2012) Water and a protic ionic liquid acted as refolding additives for chemically denatured enzymes. Org Biomol Chem 10:7475–7478

    CAS  PubMed  Google Scholar 

  • Attri P, Venkatesu P (2012) Influence of protic ionic liquids on the structure and stability of succinylated Con A. Int J Biol Macromol 51:119–128

    CAS  PubMed  Google Scholar 

  • Attri P, Jha I, Choi EH, Venkatesu P (2014) Variation in the structural changes of myoglobin in the presence of several protic ionic liquid. Int J Biol Macromol 69:114–123

    CAS  PubMed  Google Scholar 

  • Bisht M, Venkatesu P (2017) Influence of cholinium-based ionic liquids on the structural stability and activity of α-chymotrypsin. New J Chem 41:13902–13911

    CAS  Google Scholar 

  • Bisht M, Kumar A, Venkatesu P (2015) Analysis of the driving force that rule the stability of lysozyme in alkylammonium-based ionic liquids. Int J Biol Macromol 81:1074–1081

    CAS  PubMed  Google Scholar 

  • Bisht M, Jha I, Venkatesu P (2016) Comprehensive evaluation of biomolecular interactions between protein and amino acid based-ionic liquids: a comparable study between [Bmim][Br] and [Bmim][Gly] ionic liquids. Chemistry Select 1:3510–3519

    CAS  Google Scholar 

  • Bisht M, Mondal D, Pereira MM et al (2017) Long-term protein packaging in cholinium-based ionic liquids: improved catalytic activity and enhanced stability of cytochrome c against multiple stresses. Green Chem 19:4900–4911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bi YH, Duan ZQ, Li XQ et al (2015) Introducing biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine. Agric Food Chem 63:1558–1561

    CAS  Google Scholar 

  • Bates ED, Mayton RD, Ntai I et al (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927

    CAS  PubMed  Google Scholar 

  • Benedetto A, Ballone P (2016) Room temperature ionic liquids meet biomolecules: a microscopic view of structure and dynamics. ACS Sus Chem Eng 4:392–412

    CAS  Google Scholar 

  • Chen FF, Huang K, Zhou Y et al (2016) Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids. Angew Chem 128:7282–7286

    Google Scholar 

  • Desai R K, Streefland M, Wijffels R H, et al (2016) Extraction of proteins with ABS. In: Freire M. (eds) Ionic-liquid-based aqueous biphasic systems. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg

  • Daschakraborty S, Biswas R (2014) Dielectric relaxation in ionic liquids: role of ion-ion and ion-dipole interactions, and effects of heterogeneity. J Chem Phys 140:014504

    PubMed  Google Scholar 

  • Greaves TL, Drummond CJ (2015) Protic ionic liquids: evolving structure–property relationships and expanding applications. Chem Rev 115:11379–11448

    CAS  PubMed  Google Scholar 

  • Gupta BS, Taha M, Lee MJ (2016) Extraction of an active enzyme by self-buffering ionic liquids: a green medium for enzymatic research. RSC Adv 6:18567–18576

    CAS  Google Scholar 

  • Gebbie MA, Smith AM, Dobbs HA et al (2017) Long range electrostatic forces in ionic liquids. Chem Commun 53:1214–1224

    CAS  Google Scholar 

  • Ghosh S, Parui S, Jana B et al (2015) Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation. J Chem Phys 143:125103

    PubMed  Google Scholar 

  • Hayes R, Imberti S Dr., Warr GG et al (2013) The nature of hydrogen bonding in protic ionic liquids. Angew Chem 52:4623–4627

  • Hunt PA, Kirchner B, Welton T (2006) Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem Eur J 12:6762–6775

    CAS  PubMed  Google Scholar 

  • Hunt PA, Gould IR (2006) Structural characterization of the 1-butyl-3-methylimidazolium chloride ion pair using ab initio methods. J Phys Chem A 110:2269–2282

    CAS  PubMed  Google Scholar 

  • Jha I, Venkatesu P (2016) Unprecedented improvement in the stability of Haemoglobin in the presence of promising green solvent 1-allyl-3-methylimidazolium chloride. ACS Sustain Chem Eng 4:413−421

    Google Scholar 

  • Jha I, Attri P, Venkatesu P (2014) Unexpected effects of the alteration of structure and stability of myoglobin and hemoglobin in ammonium-based ionic liquids. Phys Chem Chem Phys 16:5514–5526

    CAS  PubMed  Google Scholar 

  • Jha I, Rani A, Venkatesu P (2017) Sustained stability and activity of lysozyme in choline chloride against pH induced denaturation. ACS Sus Chem Eng 5:8344–8355

    CAS  Google Scholar 

  • Jha I, Bisht M, Venkatesu P (2016) Does 1-allyl-3-methylimidazolium chloride acts as a biocompatible solvent for stem bromelain? J Phys Chem B 120:5625–5633

    CAS  PubMed  Google Scholar 

  • Kossmann S, Thar J, Kirchner B, Hunt PA (2006) Cooperativity in ionic liquids. J Chem Phys 124:174506–174512

    PubMed  Google Scholar 

  • Kumar A, Rani A, Venkatesu P (2015) A comparative study of the Hofmeister series of anions of the ionic salts and ionic liquids on the stability of α-chymotrypsin. New J Chem 39:938–952

    CAS  Google Scholar 

  • Kumar A, Rani A, Venkatesu P et al (2014a) Quantitative evaluation of the ability of ionic liquids to offset the cold-induced unfolding of proteins. Phys Chem Chem Phys 16:15806–15810

    CAS  PubMed  Google Scholar 

  • Kumar A, Venkatesu P (2013) Prevention of insulin self-aggregation by protic ionic liquid. RSC Adv 3:362–367

    CAS  Google Scholar 

  • Kumar A, Bisht M, Venkatesu P (2016) Exploring the structure and stability of amino acids and glycine peptides in biocompatible ionic liquids. RSC Adv 6:18763–18777

    CAS  Google Scholar 

  • Kumar A, Venkatesu P, Taha M, Lee MJ (2014b) Thermodynamic contribution of amino acids in ionic liquids towards protein stability. Curr Biochem Eng 1:125–140

    Google Scholar 

  • Kumar A, Venkatesu P (2014) Does the stability of proteins in ionic liquids obeys the Hofmeister series? Int J Biol Macromol 63:244–253

    CAS  PubMed  Google Scholar 

  • Kumar A, Venkatesu P (2012) Overview of the stability of α-chymotrypsin in different solvent media. Chem Rev 112:4283–4307

    CAS  PubMed  Google Scholar 

  • Kumar A, Bisht M, Venkatesu P (2017) Biocompatibility of ionic liquids towards protein stability: a comprehensive overview on the current understanding and their implications. Int J Biol Macromol 96:611–651

    CAS  PubMed  Google Scholar 

  • Katoh R, Hara M, Tsuzuki S (2008) Ion pair formation in [bmim]I ionic liquids. J Phys Chem B 112:15426–15430

    CAS  PubMed  Google Scholar 

  • Kareem MA, Mjalli FS, Hashim Mohd A, AlNashef IM (2010) Phosphonium-based ionic liquids analogues and their physical properties. J Chem Eng Data 55:4632–4637

    CAS  Google Scholar 

  • Losada-Pérez P, Khorshid M, Renner FU (2016) Interactions of aqueous imidazolium-based ionic liquid mixtures with solid-supported phospholipid vesicles. PLoS One 11:e0163518

    PubMed  PubMed Central  Google Scholar 

  • Lee SY, Khoiroh I, Ooi CW et al (2017) Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems. Sep Purif Rev 46:291–304

    CAS  Google Scholar 

  • Lei Z (2017) Introduction: Ionic Liquids. Chem Rev 117:6633–6635

    PubMed  Google Scholar 

  • Lei Z, Dai C, Chen B (2014) Gas solubility in ionic liquids. Chem Rev 114:1289–1326

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Hagiwara R, Mazej Z, Benkič P, Žemva B (2006) Crystal structures of frozen room temperature ionic liquids, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4), hexafluoroniobate (EMImNbF6) and hexafluorotantalate (EMImTaF6), determined by low-temperature X-ray diffraction. Solid State Sci 8:1250–1257

    CAS  Google Scholar 

  • Mai NL, Ahn K, Koo YM (2014) Methods for recovery of ionic liquids—a review. Process Biochem 49:872–881

    CAS  Google Scholar 

  • Mojumdar SS, Chowdhury R, Chattoraj S et al (2012) Role of ionic liquid on the conformational dynamics in the native, molten globule, and unfolded states of cytochrome C: a fluorescence correlation spectroscopy study. J Phys Chem B 116:12189–12198

    PubMed  Google Scholar 

  • Niedermeyer H, Hallett JP, Villar-Garcia IJ et al (2012) Mixtures of ionic liquids. Chem Soc Rev 41:7780–7802

    CAS  PubMed  Google Scholar 

  • Nakajima K, Nakanishi S, Lísal M, Kimura K (2017) Surface structures of binary mixture of ionic liquids. J Mol Liq 230:542–549

    CAS  Google Scholar 

  • Podgoršek A, Jacquemin J, Pádua AAH et al (2016) Mixing enthalpy for binary mixtures containing ionic liquids. Chem Rev 116:6075−6106

    Google Scholar 

  • Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids—advantages beyond green technology. Cur Opin Biotechnol 14:432–437

    CAS  Google Scholar 

  • Reddy PM, Umapathi R, Venkatesu P (2015) A green approach to offset the perturbation action of 1-butyl-3-methylimidazolium iodide on α-chymotrypsin. Phys Chem Chem Phys 17:184–190

    CAS  PubMed  Google Scholar 

  • Ramdin M, de Loos TW, Vlugt TJH (2012) State-of-the-art of CO2 capture with ionic liquids. Ind Eng Chem Res 51:8149–8177

    CAS  Google Scholar 

  • Sasmal DK, Mondal T, Mojumdar SS et al (2011) An FCS study of unfolding and refolding of CPM-labeled human serum albumin: role of ionic liquid. J Phys Chem B 115:13075–13083

    CAS  PubMed  Google Scholar 

  • Schröder C (2017) Proteins in ionic liquids: current status of experiments and simulations. Top Curr Chem 375–425

  • Stolarska O, Pawlowska-Zygarowicz A, Soto A, Rodríguez H et al (2017) Mixtures of ionic liquids as more efficient media for cellulose dissolution. Carbohydr Polym 178:2017

    Google Scholar 

  • Sivapragasam M, Moniruzzaman M, Goto M (2016) Recent advances in exploiting ionic liquids for biomolecules: solubility, stability and applications. Biotechnol J 11:1000–1013

    CAS  PubMed  Google Scholar 

  • Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    CAS  PubMed  Google Scholar 

  • Taha ME, Silva FA, Quental MV, Ventura Sónia PM, Freirea MG, Coutinho JAP (2014) Good's buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research. Green Chem 16:3149–3159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayraghavan R, Pas SJ, Izgorodina EI et al (2013) Diamino protic ionic liquids for CO2 capture. Phys Chem Chem Phys 15:19994–19999

    CAS  PubMed  Google Scholar 

  • Weight A K, Larson A M, Langer R S, et al (2015) U S Patent No. WO 2015038811 A2, Liquid protein formulations containing ionic liquids

  • Wu BP, Wen Q, Xu H, Yang Z (2014) Insights into the impact of deep eutectic solvents on horseradish peroxidase: activity, stability and structure. J Mol Catal B Enzym 101:101–107

    CAS  Google Scholar 

  • Wang B, Qin L, Mu T et al (2017) Are ionic liquids chemically stable? Chem Rev 117:7113–7131

    CAS  PubMed  Google Scholar 

  • Wang M, Rao N, Wang M et al (2018) Properties of ionic liquid mixtures of [NH2e-mim][BF4] and [bmim][BF4] as absorbents for CO2 capture. Greenhouse Gas Sci Technol 0:1–10

    Google Scholar 

  • Xia Z, Das P, Shakhnovich E et al (2012) Collapse of unfolded proteins in a mixture of denaturants. J Am Chem Soc 134:18266–18274

    CAS  PubMed  Google Scholar 

  • Xiao D, Rajian JR, Li S et al (2006) Additivity in the optical Kerr effect spectra of binary ionic liquid mixtures: implications for nanostructural organization. J Phys Chem B 110:16174–16178

    CAS  PubMed  Google Scholar 

  • Xiao D, Rajian JR, Hines LG, Li S et al (2008) Nanostructural organization and anion effects in the optical Kerr effect spectra of binary ionic liquid mixtures. J Phys Chem B 112:13316–13325

    CAS  PubMed  Google Scholar 

  • Xu P, Du P, Zong MH et al (2016) Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell. Sci Rep 6:1–10

    Google Scholar 

  • Zhao H (2016) Protein stabilization and enzyme activation in ionic liquids: specific ion effects. J Chem Technol Biotechnol 91:25–50

    CAS  PubMed  Google Scholar 

  • Zhang S, Zhang J, Zhang Y et al (2017) Nanoconfined ionic liquids. Chem Rev 117:6755–6833

    CAS  PubMed  Google Scholar 

  • Zahn S, Uhlig F, Thar J, Spickermann C et al (2008) Intermolecular forces in an ionic liquid ([Mmim][Cl]) versus those in a typical salt (NaCl). Angew Chem 47:3639–3641

    CAS  Google Scholar 

  • Zeng S, Zhang X, Bai L et al (2017) Ionic-liquid-based CO2 capture systems: structure, interaction and process. Chem Rev 117:9625–9673

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Council of Scientific and Industrial Research, New Delhi, India, through the Grant No. 01(2871)/17/EMR-II) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pannuru Venkatesu.

Ethics declarations

Conflict of interest

Awanish Kumar declares that he has no conflicts of interest. Pannuru Venkatesu declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on “Ionic Liquids and Biomolecules” edited by Antonio Benedetto and Hans-Joachim Galla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Venkatesu, P. Innovative aspects of protein stability in ionic liquid mixtures. Biophys Rev 10, 841–846 (2018). https://doi.org/10.1007/s12551-018-0411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-018-0411-x

Keywords

Navigation