Skip to main content
Log in

Ionic liquids in whole-cell biocatalysis: a compromise between toxicity and efficiency

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Comparison of chemical catalysis by metal complexes, enzymatic catalysis and whole-cell biocatalysis shows well-addressed advantages of the latter approach. However, a critical limitation in the practical applications originates from the high sensitivity of microorganisms to the toxic effects of organic solvents. In the present review, we consider toxic solvent properties of ionic liquid/water systems towards the development of efficient applications in practical organic transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMMOENG™ 100:

Cocosalkylpenthaethoxymethylammonium methylsulfate

[CnMIM]:

1-alkyl-3-methylimidazolium

[HOC2MIM]:

(2-hydroxy)ethyl-3-methylimidazolium

[CnC1MIM]:

1-alkyl-2,3-dimethylimidazolium

[PPMIM]:

1-phenylpropyl-3-methylimidazolium

[AMIM]:

1-allyl-3-methylimidazolium

[BzMIM]:

1-benzyl-3-methylimidazolium

[HOOC2MIM]:

1-carboxymethyl-3-methylimidazolium

[CnPy]:

N-alkylpyridinium

[CnMPy]:

N-alkyl-3-methyl-pyridinium

[CnMPyr]:

N-alkyl-N-methylpyrrolidinium

[CnMPip]:

N-alkyl-N-methylpiperidinium

[(C1OC3)C1Pip]:

N-methyl-N-(1-methoxypropyl)-piperidinium

[CnCnCnCnN]:

N,N,N,N-tetraalkylammonium

[Chol]:

cholinium, N-(2-hydroxy)ethyl- N,N,N-trimethylammonium

[(HOC2)(C1)2N]:

N,N-dimethyl-N-ethanolammonium

[(HOC2)2C4C2N]:

N,N-di(2-hydroxy)ethyl- N-butyl-N-ethylammonium

[(HOC3)C2(C1)2N]:

N-(3-hydroxy)propyl- N-ethyl-N,N-dimethylammonium

[(HOC3)C4(C1)2N]:

N-(3-hydroxy)propyl- N-butyl-N,N-dimethylammonium

[(HOC2)3C1N]:

Tris(2-hydroxyethyl)methylammonium

[CnCnCnCnN]:

Tetraalkylphosphonium

[(HOC3)3C10P]:

Decyltris(3-hydroxypropyl)phosphonium

[(C1)4C2Gua]:

N,N,N’,N’-tetramethyl-N”-ethylguanidinium

[CABHEM]:

PEG-5 cocomonium

[BF4]:

Tetrafluoroborate

[PF6]:

Hexafluorophosphate

[OTf]:

Trifluoromethanesulfonate

[NTf2]:

Bis(trifluoromethylsulfonyl)imide

[(C2F5)3PF3]:

Tris(pentafluoroethyl)trifluorophosphate

[N(CN)2]:

Dicyanamide

[SCN]:

Thiocyanate

[NO3]:

Nitrate

[OAc]:

Acetate

[C2COO]:

Propanoate

[C5COO]:

Hexanoate

[C1PO3]:

Methylphosphonate

[C2PO4]:

Dimethylphosphate

[i-(C8)2PO4]:

Bis(2,4,4-trimethylpentyl)phosphinate

[C2SO3]:

Ethylsulfonate

[CnSO4]:

Alkylsulfate

[CnOCnSO4]:

2-alkoxyalkylsulfate

[C1(OC2)3SO4]:

2-[2-(2-methoxy)ethoxy]ethoxyethylsulfate

[Tos]:

Tosylate, p-toluenesulfonate

[MDEGSO4]:

Ethylenglycolmonomethylethersulfate

[SbF6]:

Hexafluoroantimonate

[Lac]:

Lactate

[Sacch]:

Saccharinate

[Doc]:

Docusate

[Lin]:

Linoleate

References

  • Alves PC, Hartmann DO, Nunez O, Martins I, Gomes TL, Garcia H et al (2016) Transcriptomic and metabolomic profiling of ionic liquid stimuli unveils enhanced secondary metabolism in Aspergillus nidulans. BMC Genomics 17:284

    PubMed  PubMed Central  Google Scholar 

  • Arai S, Nakashima K, Tanino T, Ogino C, Kondo A, Fukuda H (2010) Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. Enzym Microb Technol 46:51–55

    CAS  Google Scholar 

  • Baum S, van Rantwijk F, Stolz A (2012) Application of a recombinant Escherichia coli whole-cell catalyst expressing hydroxynitrile lyase and nitrilase activities in ionic liquids for the production of (S)-mandelic acid and (S)-mandeloamide. Adv Synth Catal 354:113–122

    CAS  Google Scholar 

  • Benedetto A (2017) Room-temperature ionic liquids meet bio-membranes: the state-of-the-art. Biophys Rev 9:309–320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetto A, Ballone P (2016) Room temperature ionic liquids meet biomolecules: a microscopic view of structure and dynamics. ACS Sustain Chem Eng 4:392–412

    CAS  Google Scholar 

  • Bräutigam S, Bringer-Meyer S, Weuster-Botz D (2007) Asymmetric whole cell biotransformations in biphasic ionic liquid/water-systems by use of recombinant Escherichia coli with intracellular cofactor regeneration. Tetrahedron Asymmetry 18:1883–1887

    Google Scholar 

  • Bräutigam S, Dennewald D, Schürmann M, Lutje-Spelberg J, Pitner W-R, Weuster-Botz D (2009) Whole-cell biocatalysis: evaluation of new hydrophobic ionic liquids for efficient asymmetric reduction of prochiral ketones. Enzym Microb Technol 45:310–316

    Google Scholar 

  • Castiglione K, Fu Y, Polte I, Leupold S, Meo A, Weuster-Botz D (2017) Asymmetric whole-cell bioreduction of (R)-carvone by recombinant Escherichia coli with in situ substrate supply and product removal. Biochem Eng J 117:102–111

    CAS  Google Scholar 

  • Chandran A, Ghoshdastidar D, Senapati S (2012) Groove binding mechanism of ionic liquids: a key factor in long-term stability of DNA in hydrated ionic liquids? J Am Chem Soc 134:20330–20339

    CAS  PubMed  Google Scholar 

  • Chattoraj S, Amin MA, Mohapatra S, Ghosh S, Bhattacharyya K (2016) Cancer cell imaging using in situ generated gold nanoclusters. ChemPhysChem 17:61–68

    CAS  PubMed  Google Scholar 

  • Chen J-Y, Kaleem I, He D-M, Liu G-Y, Li C (2012) Efficient production of glycyrrhetic acid 3-O-mono-β-d-glucuronide by whole-cell biocatalysis in an ionic liquid/buffer biphasic system. Process Biochem 47:908–913

    CAS  Google Scholar 

  • Chen L, Sharifzadeh M, Mac Dowell N, Welton T, Shah N, Hallett JP (2014) Inexpensive ionic liquids: [HSO4]−based solvent production at bulk scale. Green Chem 16:3098–3106

  • Choi HJ, Uhm K-N, Kim H-K (2011) Production of chiral compound using recombinant Escherichia coli cells co-expressing reductase and glucose dehydrogenase in an ionic liquid/water two phase system. J Mol Catal B Enzym 70:114–118

    CAS  Google Scholar 

  • Cornmell RJ, Winder CL, Schuler S, Goodacre R, Stephens G (2008) Using a biphasic ionic liquid/water reaction system to improve oxygenase-catalysed biotransformation with whole cells. Green Chem 10:685–691

    CAS  Google Scholar 

  • de Carvalho CCCR (2011) Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 29:75–83

    PubMed  Google Scholar 

  • de Carvalho CCCR (2017) Whole cell biocatalysts: essential workers from nature to the industry. Microb Biotechnol 10:250–263

    PubMed  Google Scholar 

  • Dennewald D, Pitner W-R, Weuster-Botz D (2011) Recycling of the ionic liquid phase in process integrated biphasic whole-cell biocatalysis. Process Biochem 46:1132–1137

    CAS  Google Scholar 

  • Dennewald D, Hortsch R, Weuster-Botz D (2012) Evaluation of parallel milliliter-scale stirred-tank bioreactors for the study of biphasic whole-cell biocatalysis with ionic liquids. J Biotechnol 157:253–257

    CAS  PubMed  Google Scholar 

  • Dipeolu O, Green E, Stephens G (2009) Effects of water-miscible ionic liquids on cell growth and nitro reduction using Clostridium sporogenes. Green Chem 11:397–401

    CAS  Google Scholar 

  • Egorova KS, Ananikov VP (2014) Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 7:336–360

    CAS  PubMed  Google Scholar 

  • Egorova KS, Ananikov VP (2016) Which metals are green for catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew Chem Int Ed 55:12150–12162

  • Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117:7132–7189

    CAS  PubMed  Google Scholar 

  • Frederix M, Hütter K, Leu J, Batth TS, Turner WJ, Rüegg TL et al (2014) Development of a native Escherichia coli induction system for ionic liquid tolerance. PLoS ONE 9:e101115

    PubMed  PubMed Central  Google Scholar 

  • Frederix M, Mingardon F, Hu M, Sun N, Pray T, Singh S et al (2016) Development of an E. coli strain for one-pot biofuel production from ionic liquid pretreated cellulose and switchgrass. Green Chem 18:4189–4197

    CAS  Google Scholar 

  • Gao P, Li A, Lee HH, Wang DIC, Li Z (2014) Enhancing enantioselectivity and productivity of P450-catalyzed asymmetric sulfoxidation with an aqueous/ionic liquid biphasic system. ACS Catal 4:3763–3771

    CAS  Google Scholar 

  • George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N et al (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734

    CAS  Google Scholar 

  • Gorke J, Srienc F, Kazlauskas R (2010) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng 15:40–53

    CAS  Google Scholar 

  • Hajfarajollah H, Mokhtarani B, Sharifi A, Mirzaei M, Afaghi A (2014) Toxicity of various kinds of ionic liquids towards the cell growth and end product formation of the probiotic strain, Propionibacterium freudenreichii. RSC Adv 4:13153–13160

    CAS  Google Scholar 

  • Hartmann DO, Shimizu K, Siopa F, Leitão MC, Afonso CAM, Canongia Lopes JN et al (2015) Plasma membrane permeabilisation by ionic liquids: a matter of charge. Green Chem 17:4587–4598

    CAS  Google Scholar 

  • Hashmi M, Shah A, Hameed A, Ragauskas A (2017) Enhanced production of bioethanol by fermentation of autohydrolyzed and C4mimOAc-treated sugarcane bagasse employing various yeast strains. Energies 10:1207

    Google Scholar 

  • Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426

    CAS  PubMed  Google Scholar 

  • He J-Y, Wang P, Yang Y-F, Xie S-L (2011) Enhanced whole-cell biodehydrogenation of 11β-hydroxyl medroxyprogesterone in a biphasic system containing ionic liquid. Biotechnol Bioprocess Eng 16:852–857

    CAS  Google Scholar 

  • Howarth J, James P, Dai JF (2001) Immobilized baker’s yeast reduction of ketones in an ionic liquid, [bmim]PF6 and water mix. Tetrahedron Lett 42:7517–7519

    CAS  Google Scholar 

  • Hussain W, Pollard DJ, Lye GJ (2007) The bioreduction of a β-tetralone to its corresponding alcohol by the yeast Trichosporon capitatum MY1890 and bacterium Rhodococcus erythropolis MA7213 in a range of ionic liquids. Biocatal Biotransform 25:443–452

    CAS  Google Scholar 

  • Jeong S, Ha SH, Han S-H, Lim M-C, Kim SM, Kim Y-R, et al. (2012) Elucidation of molecular interactions between lipid membranes and ionic liquids using model cell membranes. Soft Matter 8:5501–5506

  • Jing C, Hu H, Guo M, Chen X, Li T (2014a) Cytotoxicity of 1-octyl-3-methylimidazolium chloride on Escherichia coli DH5α. Toxin Rev 33:91–94

    CAS  Google Scholar 

  • Jing C, Mu L, Ren T, Li B, Chen S, Nan W (2014b) Effect of 1-octyl-3-methylimidazolium chloride on cell replication and membrane permeability of Escherichia coli DH5alpha. Bull Environ Contam Toxicol 93:60–63

    CAS  PubMed  Google Scholar 

  • Jumbri K, Rahman MBA, Abdulmalek E, Ahmad H, Micaelo NM (2014) An insight into structure and stability of DNA in ionic liquids from molecular dynamics simulation and experimental studies. Phys Chem Chem Phys 16:14036–14046

    CAS  PubMed  Google Scholar 

  • Kandar S, Suresh AK, Noronha SB (2015) (R)-PAC biosynthesis in [BMIM][PF6]/aqueous biphasic system using Saccharomyces cerevisiae BY4741 cells. Appl Biochem Biotechnol 175:1771–1788

    CAS  PubMed  Google Scholar 

  • Kashin AS, Galkin KI, Khokhlova EA, Ananikov VP (2016) Direct observation of self-organized water-containing structures in the liquid phase and their influence on 5-(hydroxymethyl)furfural formation in ionic liquids. Angew Chem Int Ed 55:2161–2166

    CAS  Google Scholar 

  • Khudyakov JI, D’Haeseleer P, Borglin SE, Deangelis KM, Woo H, Lindquist EA et al (2012) Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus. Proc Natl Acad Sci U S A 109:E2173–E2182

  • Ladkau N, Schmid A, Buhler B (2014) The microbial cell-functional unit for energy dependent multistep biocatalysis. Curr Opin Biotechnol 30:178–189

    CAS  PubMed  Google Scholar 

  • Lee S-M, Chang W-J, Choi A-R, Koo Y-M (2005) Influence of ionic liquids on the growth of Escherichia coli. Korean J Chem Eng 22:687–690

    CAS  Google Scholar 

  • Lenourry A, Gardiner J, Stephens G (2005) Hydrogenation of C-C double bonds in an ionic liquid reaction system using the obligate anaerobe, Sporomusa termitida. Biotechnol Lett 27:161–165

    CAS  PubMed  Google Scholar 

  • Li J, Wang P, Huang J, Sun J (2015) Design and application of a novel ionic liquid with the property of strengthening coenzyme regeneration for whole-cell bioreduction in an ionic liquid-distilled water medium. Bioresour Technol 175:42–50

    CAS  PubMed  Google Scholar 

  • Lin B, Tao Y (2017) Whole-cell biocatalysts by design. Microb Cell Factories 16:106

    Google Scholar 

  • Lou W-Y, Zong M-H, Smith TJ (2006) Use of ionic liquids to improve whole-cell biocatalytic asymmetric reduction of acetyltrimethylsilane for efficient synthesis of enantiopure (S)-1-trimethylsilylethanol. Green Chem 8:147–155

  • Lou W-Y, Chen L, Zhang BB, Smith TJ, Zong MH (2009a) Using a water-immiscible ionic liquid to improve asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one catalyzed by immobilized Candida parapsilosis CCTCC M203011 cells. BMC Biotechnol 9:90

    PubMed  PubMed Central  Google Scholar 

  • Lou W-Y, Wang W, Li RF, Zong MH (2009b) Efficient enantioselective reduction of 4′-methoxyacetophenone with immobilized Rhodotorula sp. AS2.2241 cells in a hydrophilic ionic liquid-containing co-solvent system. J Biotechnol 143:190–197

    CAS  PubMed  Google Scholar 

  • Lou W-Y, Wang W, Smith TJ, Zong M-H (2009c) Biocatalytic anti-Prelog stereoselective reduction of 4′-methoxyacetophenone to (R)-1-(4-methoxyphenyl)ethanol with immobilized Trigonopsis variabilis AS2.1611 cells using an ionic liquid-containing medium. Green Chem 11:1377–1384

    CAS  Google Scholar 

  • Lovejoy KS, Davis LE, McClellan LM, Lillo AM, Welsh JD, Schmidt EN et al (2012) Evaluation of ionic liquids on phototrophic microbes and their use in biofuel extraction and isolation. J Appl Phycol 25:973–981

    Google Scholar 

  • Luo Y, Wang Q, Lu Q, Mu Q, Mao D (2014) An ionic liquid facilitates the proliferation of antibiotic resistance genes mediated by class I integrons. Environ Sci Technol Lett 1:266–270

    CAS  Google Scholar 

  • Mao S, Hu X, Hua B, Wang N, Liu X, Lu F (2012) 15α-hydroxylation of a steroid (13-ethyl-gon-4-en-3,17-dione) by Penicillium raistrickii in an ionic liquid/aqueous biphasic system. Biotechnol Lett 34:2113–2117

    CAS  PubMed  Google Scholar 

  • Mao S, Hua B, Wang N, Hu X, Ge Z, Li Y et al (2013) 11α hydroxylation of 16α, 17-epoxyprogesterone in biphasic ionic liquid/water system by Aspergillus ochraceus. J Chem Technol Biotechnol 88:287–292

    CAS  Google Scholar 

  • Martins I, Hartmann DO, Alves PC, Planchon S, Renaut J, Leitao MC et al (2013) Proteomic alterations induced by ionic liquids in Aspergillus nidulans and Neurospora crassa. J Proteomics 94:262–278

  • Matsumoto M, Sugimoto T, Ishiguro Y, Yamaguchi H, Kondo K (2014) Effect of organic solvents and ionic liquids on resolution of 2-epoxyhexane by whole cells of Rhodotorula glutinis in a two-liquid phase system. J Chem Technol Biotechnol 89:522–527

  • Mehmood N, Husson E, Jacquard C, Wewetzer S, Buchs J, Sarazin C et al (2015) Impact of two ionic liquids, 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium methylphosphonate, on Saccharomyces cerevisiae: metabolic, physiologic, and morphological investigations. Biotechnol Biofuels 8:17

    PubMed  PubMed Central  Google Scholar 

  • Melgarejo-Torres R, Torres-Martínez D, Gutiérrez-Rojas M, Gómez de Jesús A, Lye GJ, Huerta-Ochoa S (2011) Regime analysis of a Baeyer–Villiger bioconversion in a three-phase (air–water–ionic liquid) stirred tank bioreactor. Biochem Eng J 58-59:87–95

    CAS  Google Scholar 

  • North M, Clark JH, eds. (2016). Sustainable Catalysis With Non-endangered Metals. Parts 1 and 2. Royal Society of Chemistry, Cambridge

  • Ouellet M, Datta S, Dibble DC, Tamrakar PR, Benke PI, Li C et al (2011) Impact of ionic liquid pretreated plant biomass on Saccharomyces Cerevisiae growth and biofuel production. Green Chem 13:2743–2749

    CAS  Google Scholar 

  • Pérez de los Ríos A, Hernández-Fernández FJ, Zapata Henríquez PA, Missoun F, Hernández-Fernández J, Ortiz-Martínez V et al (2017) Keys for bioethanol production processes by fermentation and ionic liquid extraction. ACS Sustain Chem Eng 5:6986–6993

  • Petkovic M, Ferguson J, Bohn A, Trindade J, Martins I, Carvalho MB et al (2009) Exploring fungal activity in the presence of ionic liquids. Green Chem 11:889–894

    CAS  Google Scholar 

  • Petkovic M, Hartmann DO, Adamová G, Seddon KR, Rebelo LPN, Pereira CS (2012) Unravelling the mechanism of toxicity of alkyltributylphosphonium chlorides in Aspergillus nidulans conidia. New J Chem 36:56–63

    CAS  Google Scholar 

  • Pfruender H, Amidjojo M, Kragl U, Weuster-Botz D (2004) Efficient whole-cell biotransformation in a biphasic ionic liquid/water system. Angew Chem Int Ed 43:4529–4531

    CAS  Google Scholar 

  • Pfruender H, Jones R, Weuster-Botz D (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol 124:182–190

    CAS  PubMed  Google Scholar 

  • Quijano G, Couvert A, Amrane A (2010) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101:8923–8930

    CAS  PubMed  Google Scholar 

  • Radosevic K, Bubalo MC, Srcek VG, Grgas D, Dragicevic TL, Redovnikovic IR (2015) Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf 112:46–53

    CAS  PubMed  Google Scholar 

  • Ruegg TL, Kim EM, Simmons BA, Keasling JD, Singer SW, Lee TS et al (2014) An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nat Commun 5:3490

    PubMed  Google Scholar 

  • Santos AG, Ribeiro BD, Alviano DS, Coelho MAZ (2014) Toxicity of ionic liquids toward microorganisms interesting to the food industry. RSC Adv 4:37157–37163

    CAS  Google Scholar 

  • Satpathi S, Sengupta A, Hridya VM, Gavvala K, Koninti RK, Roy B et al (2015) A green solvent induced DNA package. Sci Rep 5:9137

    PubMed Central  Google Scholar 

  • Schmideder A, Priebe X, Rubenbauer M, Hoffmann T, Huang F-C, Schwab W et al (2016) Non-water miscible ionic liquid improves biocatalytic production of geranyl glucoside with Escherichia coli overexpressing a glucosyltransferase. Bioprocess Biosyst Eng 39:1409–1414

    CAS  PubMed  Google Scholar 

  • Schrewe M, Julsing MK, Bühler B, Schmid A (2013) Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev 42:6346–6377

    CAS  PubMed  Google Scholar 

  • Schroer K, Tacha E, Lütz S (2007) Process intensification for substrate-coupled whole cell ketone reduction by in situ acetone removal. Org Process Res Dev 11:836–841

    CAS  Google Scholar 

  • Seitkalieva MM, Kachala VV, Egorova KS, Ananikov VP (2015) Molecular extraction of peptides in ionic liquid systems. ACS Sustain Chem Eng 3:357–364

    CAS  Google Scholar 

  • Seitkalieva MM, Kashin AS, Egorova KS, Ananikov VP (2017) Micro-scale processes occurring in ionic liquid–water phases during extraction. Sep Purif Technol:ePub ahead of print. https://doi.org/10.1016/j.seppur.2017.06.056

  • Sendovski M, Nir N, Fishman A (2010) Bioproduction of 2-phenylethanol in a biphasic ionic liquid aqueous system. J Agric Food Chem 58:2260–2265

    CAS  PubMed  Google Scholar 

  • Silva VD, Carletto JS, Carasek E, Stambuk BU, Nascimento MG (2013) Asymmetric reduction of (4S)-(+)-carvone catalyzed by baker’s yeast: a green method for monitoring the conversion based on liquid–liquid–liquid microextraction with polypropylene hollow fiber membranes. Process Biochem 48:1159–1165

    CAS  Google Scholar 

  • Simmons CW, Reddy AP, Vandergheynst JS, Simmons BA, Singer SW (2014) Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture. Biotechnol Prog 30:311–316

    CAS  PubMed  Google Scholar 

  • Song X-L, Ye S-Y, Xie R, Yin L, Shi X, Luo S-C (2011) Effects of bmim[PF6] treatments with different concentrations on microbial activity of Saccharomyces cerevisiae. Korean J Chem Eng 28:1902–1907

    CAS  Google Scholar 

  • Sun J, Konda NVSNM, Parthasarathi R, Dutta T, Valiev M, Xu F et al (2017) One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids. Green Chem 19:3152–3163

    CAS  Google Scholar 

  • Triolo A, Russina O, Bleif HJ, Di Cola E (2007) Nanoscale segregation in room temperature ionic liquids. J Phys Chem B 111:4641–4644

    CAS  PubMed  Google Scholar 

  • Wachtmeister J, Rother D (2016) Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Curr Opin Biotechnol 42:169–177

    CAS  PubMed  Google Scholar 

  • Wang Y, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127:12192–12193

    CAS  PubMed  Google Scholar 

  • Wang W, Zong M-H, Lou W-Y (2009) Use of an ionic liquid to improve asymmetric reduction of 4′-methoxyacetophenone catalyzed by immobilized Rhodotorula sp. AS2.2241 cells. J Mol Catal B Enzym 56:70–76

    CAS  Google Scholar 

  • Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537

    CAS  PubMed  Google Scholar 

  • Wang X-T, Yue D-M, Zong M-H, Lou W-Y (2013) Use of ionic liquid to significantly improve asymmetric reduction of ethyl acetoacetate catalyzed by Acetobacter sp. CCTCC M209061 cells. Ind Eng Chem Res 52:12550–12558

    CAS  Google Scholar 

  • Weuster-Botz D (2007) Process intensification of whole-cell biocatalysis with ionic liquids. Chem Rec 7:334–340

    CAS  PubMed  Google Scholar 

  • Wood N, Ferguson JL, Gunaratne HQN, Seddon KR, Goodacre R, Stephens GM (2011) Screening ionic liquids for use in biotransformations with whole microbial cells. Green Chem 13:1843–1851

    CAS  Google Scholar 

  • Wu D-X, Guan Y-X, Wang H-Q, Yao S-J (2011) 11α-hydroxylation of 16α,17-epoxyprogesterone by Rhizopus nigricans in a biphasic ionic liquid aqueous system. Bioresour Technol 102:9368–9373

    CAS  PubMed  Google Scholar 

  • Xiao Z-J, Du P-X, Lou W-Y, Wu H, Zong M-H (2012) Using water-miscible ionic liquids to improve the biocatalytic anti-Prelog asymmetric reduction of prochiral ketones with whole cells of Acetobacter sp. CCTCC M209061. Chem Eng Sci 84:695–705

    CAS  Google Scholar 

  • Xu P, Zheng G-W, Du P-X, Zong M-H, Lou W-Y (2016a) Whole-cell biocatalytic processes with ionic liquids. ACS Sustain Chem Eng 4:371–386

    CAS  Google Scholar 

  • Xu Z, Wu Q, Yang M, Wang S, Wang Z, Xu X (2016b) Efficient asymmetric biosynthesis of (R)-(−)-epinephrine in hydrophilic ionic liquid-containing systems. RSC Adv 6:102292–102295

    CAS  Google Scholar 

  • Xu J, Zhou S, Zhao Y, Xia J, Liu X, Xu J et al (2017) Asymmetric whole-cell bioreduction of sterically bulky 2-benzoylpyridine derivatives in aqueous hydrophilic ionic liquid media. Chem Eng J 316:919–927

    CAS  Google Scholar 

  • Yang MY, Wu H, Lian Y, Li XF, Ren Y, Lai FR et al (2014) Using ionic liquids in whole-cell biocatalysis for the nucleoside acylation. Microb Cell Factories 13:143

    Google Scholar 

  • Yoo B, Shah JK, Zhu Y, Maginn EJ (2014) Amphiphilic interactions of ionic liquids with lipid biomembranes: a molecular simulation study. Soft Matter 10:8641–8651

    CAS  PubMed  Google Scholar 

  • Yoo B, Jing B, Jones SE, Lamberti GA, Zhu Y, Shah JK et al (2016) Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach. Sci Rep 6:19889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block. Chem Rev 111:397–417

    CAS  PubMed  Google Scholar 

  • Zampieri DS, de Paula BRS, Zampieri LA, Vale JA, Rodrigues JAR, Moran PJS (2013) Enhancements of enantio and diastereoselectivities in reduction of (Z)-3-halo-4-phenyl-3-buten-2-one mediated by microorganisms in ionic liquid/water biphasic system. J Mol Catal B 85-86:61–64

    CAS  Google Scholar 

  • Zhang ZC (2006) Catalysis in ionic liquids. Adv Catal 49:153–237

    CAS  Google Scholar 

  • Zhang F, Ni Y, Sun ZH, Zheng P, Lin WQ, Zhu P et al (2008) Asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate catalyzed by Aureobasidium pullulans in an aqueous/ionic liquid biphase system. Chin J Catal 29:577–582

    CAS  Google Scholar 

  • Zhang BB, Cheng J, Lou WY, Wang P, Zong MH (2012) Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems. Microb Cell Factories 11:108

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (grant 16-29-10804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentine P. Ananikov.

Ethics declarations

Conflict of interest

Ksenia S. Egorova declares that she has no conflict of interest. Valentine P. Ananikov declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Ionic Liquids and Biomolecules’ edited by Antonio Benedetto and Hans-Joachim Galla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorova, K.S., Ananikov, V.P. Ionic liquids in whole-cell biocatalysis: a compromise between toxicity and efficiency. Biophys Rev 10, 881–900 (2018). https://doi.org/10.1007/s12551-017-0389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0389-9

Keywords

Navigation