Skip to main content
Log in

Investigating dynamic interdomain allostery in Pin1

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Signaling proteins often sequester complementary functional sites in separate domains. How do the different domains communicate with one another? An attractive system to address this question is the mitotic regulator, human Pin1 (Lu et al., Nature 380:544–547, 1996). Pin-1 consists of two mutually tethered domains: a WW domain for substrate binding and a catalytic domain for peptidyl-prolyl isomerase (PPIase) activity. Pin1 accelerates the cistrans isomerization of phospho-Ser/Thr-Pro (pS/T-P) motifs within proteins regulating the cell cycle and neuronal development. The early X-ray (Ranganathan et al., Cell 89:875–886, 1997; Verdecia et al., Nat Struct Biol 7:639–643, 2000) and solution NMR studies (Bayer et al., J Biol Chem 278:26183–26193, 2003; Jacobs et al., J Biol Chem 278:26174–26182, 2003) of Pin1 indicated inter- and intradomain motions. We have explored how such motions might affect interdomain communication, using NMR. Our accumulated results indicate substrate binding to Pin1 WW domain changes the intra/interdomain mobility, thereby altering substrate activity in the distal PPIase domain catalytic site. Thus, Pin1 shows evidence of dynamic allostery, in the sense of Cooper and Dryden (Eur J Biochem 11:103–109, 1984). We highlight our results supporting this conclusion and summarize them via a simple speculative model of conformational selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bayer E, Goettsch S, Mueller JW, Griewel B, Guiberman E, Mayr LM, Bayer P (2003) Structural analysis of the mitotic regulator hPin1 in solution: insights into domain architecture and substrate binding. J Biol Chem 278:26183–26193

    Article  CAS  PubMed  Google Scholar 

  • Behrsin CD et al (2006) Functionally important residues in the peptidyl-prolyl isomerase Pin1 revealed by unigenic evolution. J Mol Biol

  • Bouchard J (2014) Ensemble interpretation of domain mobility in modular protein Pin1 by NMR and molecular dynamics. University of Notre Dame

  • Bowman GR, Geissler PL (2012) Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc Natl Acad Sci U S A 109:11681–11686. doi:10.1073/pnas.1209309109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brüschweiler S, Konrat R, Tollinger M (2013) Allosteric communication in the KIX domain proceeds through dynamic repacking of the hydrophobic core. ACS Chem Biol 8:1600–1610. doi:10.1021/cb4002188

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen CH et al (2013) SENP1 deSUMOylates and regulates Pin1 protein activity and cellular function. Cancer Res 73:3951–3962. doi:10.1158/0008-5472.CAN-12-4360

    Article  CAS  PubMed  Google Scholar 

  • Cooper A, Dryden DT (1984) Allostery without conformational change. A plausible model. Eur J Biochem 11:103–109. Landmark paper proposing intrinsic protein flexibility as vehicles of allostery.

    CAS  Google Scholar 

  • Dagbay K et al (2014) A multipronged approach for compiling a global map of allosteric regulation in the apoptotic caspases. Methods Enzymol 544:215–249. doi:10.1016/B978-0-12-417158-9.00009-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daum S, Fanghanel J, Wildemann D, Scheine-Fischer C (2006) Thermodynamics of phosphopeptide binding to human peptidyl prolyl cis/trans isomerase Pin1. Biochemistry 45:1215–12135

    Article  Google Scholar 

  • Davis IW, Arendall WB 3rd, Richardson DC, Richardson JS (2006) The backrub motion: how protein backbone shrugs when a sidechain dances. Structure 14:265–274. doi:10.1016/j.str.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  • DeLaBarre B, Hurov J, Cianchetta G, Murray S, Dang L (2014) Action at a distance: allostery and the development of drugs to target cancer cell metabolism. Chem Biol 21:1143–1161. doi:10.1016/j.chembiol.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  • Dubay KH, Bothma JP, Geissler PL (2011) Long-range intra-protein communication can be transmitted by correlated side-chain fluctuations alone. PLoS Comput Biol 7, e1002168. doi:10.1371/journal.pcbi.1002168. Lucid analysis of the mechanisms, length-scales, and sensitivity of side-chain mediated allostery.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • England JL (2011) Allostery in protein domains reflects a balance of steric and hydrophobic effects. Structure 19:967–975. doi:10.1016/j.str.2011.04.009. A novel theoretical framework is developed, relating hydrophobic burial and protein stability to allosteric communication

    Article  CAS  PubMed  Google Scholar 

  • Grathwohl C, Wüthrich K (1981) Nmr studies of the rates of proline cis-trans isomerization in oligopeptides. Biopolymers 20:2623–2633

  • Greenwood AI, Rogals MJ, De S, Lu KP, Kovrigin EL, Nicholson LK (2011) Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis. J Biomol NMR 51:21–34. doi:10.1007/s10858-011-9538-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo J, Pang X, Zhou HX (2015) Two pathways mediate interdomain allosteric regulation in pin1. Structure 23:237–247. doi:10.1016/j.str.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  • Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  CAS  PubMed  Google Scholar 

  • Ho BK, Agard DA (2010) Conserved tertiary couplings stabilize elements in the PDZ fold, leading to characteristic patterns of domain conformational flexibility. Protein Sci 19:398–411. doi:10.1002/pro.318

    PubMed Central  CAS  PubMed  Google Scholar 

  • Igumenova TI, Frederick KK, Wand AJ (2006) Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem Rev 106:1672–1699. doi:10.1021/cr040422h

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Innes BT, Bailey ML, Brandl CJ, Shilton BH, Litchfield DW (2013) Non-catalytic participation of the Pin1 peptidyl-prolyl isomerase domain in target binding. Front Physiol 4:18. doi:10.3389/fphys.2013.00018

    Article  PubMed Central  PubMed  Google Scholar 

  • Iwahara J, Peterson RD, Clubb RT (2005) Compensating increases in protein backbone flexibility occur when the Dead ringer AT-rich interaction domain (ARID) binds DNA: a nitrogen-15 relaxation study. Protein Sci 14:1140–1150. doi:10.1110/ps.041154405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobs DM, Saxena K, Vogtherr M, Bernado P, Pons M, Fiebig KM (2003) Peptide binding induces large scale changes in inter-domain mobility in human Pin1. J Biol Chem 278:26174–26182. First backbone dynamics studies of full-length Pin1 demonstrating interdomain mobility and its sensitivity to phosphopeptide substrate binding.

    Article  CAS  PubMed  Google Scholar 

  • Jarymowycz VA, Stone MJ (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106:1624–1671. doi:10.1021/cr040421p

    Article  CAS  PubMed  Google Scholar 

  • Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553

    Article  CAS  Google Scholar 

  • Kofron JL, Kuzmic P, Kishore V, Colon-Bonilla E, Rich DH (1991) Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Biochemistry 30:6127–6134

    Article  CAS  PubMed  Google Scholar 

  • Landrieu I, Smet C, Wieruszeski JM, Sambo AV, Wintjens R, Buée L, Lippens G (2006) Exploring the molecular function of PIN1 by nuclear magnetic resonance. Curr Protein Pept Sci 7:179–194

  • Landrieu I et al (2011) Molecular implication of PP2A and Pin1 in the Alzheimer’s disease specific hyperphosphorylation of Tau. PLoS One 6, e21521. doi:10.1371/journal.pone.0021521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee AS, Kinnear SA, Wand AJ (2000) Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat Struct Biol 7:72–77. Landmark paper illustrating the richness of side chain dynamics as revealed by NMR, and their potential for quantifying changes in conformational entropy; work by this laboratory has been essential for highlighting Cooper and Dryden’s model to the NMR community.

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Pastorino L, Lu KP (2011) Peptidyl-prolyl cis-trans isomerase Pin1 in ageing, cancer and Alzheimer disease. Expert Rev Mol Med 13, e21. doi:10.1017/S1462399411001906

    Article  PubMed  Google Scholar 

  • Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104:3641–3676. doi:10.1021/cr030409h

    Article  CAS  PubMed  Google Scholar 

  • Lewis JA, Lebois EP, Lindsley CW (2008) Allosteric modulation of kinases and GPCRs: design principles and structural diversity. Curr Opin Chem Biol 12:269–280. doi:10.1016/j.cbpa.2008.02.014

    Article  CAS  PubMed  Google Scholar 

  • Lim WA (2010) Designing customized cell signalling circuits. Nat Rev Mol Cell Biol 11:393–403. doi:10.1038/nrm2904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liou YC, Zhou XZ, Lu KP (2011) Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 36:501–514. doi:10.1016/j.tibs.2011.07.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lipari G, Szabo A (1982a) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  • Lipari G, Szabo A (1982b) Model-free approach to the interpretation of nuclear magnetic resonance relaxation of macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559–4570

    Article  CAS  Google Scholar 

  • Lu KP, Hanes SD, Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380:544–547. Discovery of Pin1 as a unique peptidyl-proyl isomerase relevant for the cell cycle.

    Article  CAS  PubMed  Google Scholar 

  • Lu PJ, Zhou XZ, Shen M, Lu KP (1999) Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283:1325–1328

    Article  CAS  PubMed  Google Scholar 

  • Ma SL, Pastorino L, Zhou XZ, Lu KP (2012) Prolyl isomerase Pin1 promotes amyloid precursor protein (APP) turnover by inhibiting glycogen synthase kinase-3beta (GSK3beta) activity: novel mechanism for Pin1 to protect against Alzheimer disease. J Biol Chem 287:6969–6973. doi:10.1074/jbc.C111.298596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marlow MS, Dogan J, Frederick KK, Valentine KG, Wand AJ (2010) The role of conformational entropy in molecular recognition by calmodulin. Nat Chem Biol 6:352–358. doi:10.1038/nchembio.347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matena A et al (2013) Transient domain interactions enhance the affinity of the mitotic regulator Pin1 toward phosphorylated peptide ligands. Structure 21:1769–1777. doi:10.1016/j.str.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  • McClendon CL, Friedland G, Mobley DL, Amirkhani H, Jacobson MP (2009) Quantifying correlations between allosteric sites in thermodynamic ensembles. J Chem Theory Comput 5:2486–2502. doi:10.1021/ct9001812. Lucid explanation of mutual information analyses to reveal correlated motions from computational formational ensembles.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millet O, Muhandiram DR, Skrynnikov NR, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in (13)C-labeled and fractionally (2)H-enriched proteins in solution. J Am Chem Soc 124:6439–6448

    Article  CAS  PubMed  Google Scholar 

  • Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  • Morcos F et al (2010) Modeling conformational ensembles of slow functional motions in Pin1-WW. PLoS Comput Biol 6, e1001015. doi:10.1371/journal.pcbi.1001015

    Article  PubMed Central  PubMed  Google Scholar 

  • Muhandiram DR, Yamazaki T, Sykes BD, Kay LE (1995) Measurement of 2H T1 and T1r relaxation times in uniformly 13C-labeled and fractionally 2H-labeled proteins in solution. J Am Chem Soc 117:11536–11544

    Article  CAS  Google Scholar 

  • Namanja AT, Peng T, Zintsmaster JS, Elson AC, Shakour MG, Peng JW (2007) Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1. Structure 15:313–327. First side chain dynamics study of Pin1 by NMR; reveals propagated changes in side chain mobility between the domain interface and the catalytic pocket upon binding substrate (pCdc25C).

    Article  CAS  PubMed  Google Scholar 

  • Namanja AT et al (2010) Toward flexibility-activity relationships by NMR spectroscopy: dynamics of Pin1 ligands. J Am Chem Soc 132:5607–5609. doi:10.1021/ja9096779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Namanja AT, Wang XJ, Xu B, Mercedes-Camacho AY, Wilson KA, Etzkorn FA, Peng JW (2011) Stereospecific gating of functional motions in Pin1. Proc Natl Acad Sci U S A 108:12289–12294. Side chain and backbone dynamics study of Pin1 using FFpSPR substrate and locked inhibitors reveals allosteric behavior associated with dynamic changes.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicholson LK, Kay LE, Baldisseri DM, Arango J, Young PE, Bax A, Torchia DA (1992) Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry 31:5253–5263

    Article  CAS  PubMed  Google Scholar 

  • Pastorino L et al (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440:528–534

    Article  CAS  PubMed  Google Scholar 

  • Peng T, Zintsmaster JS, Namanja AT, Peng JW (2007) Sequence-specific dynamics modulate recognition specificity in WW domains. Nat Struct Mol Biol 14:325–331

    Article  CAS  PubMed  Google Scholar 

  • Perica T et al (2014) Evolution of oligomeric state through allosteric pathways that mimic ligand binding. Science 346:1254346. doi:10.1126/science.1254346

    Article  PubMed  Google Scholar 

  • Poolman TM, Farrow SN, Matthews L, Loudon AS, Ray DW (2013) Pin1 promotes GR transactivation by enhancing recruitment to target genes. Nucleic Acids Res 41:8515–8525. doi:10.1093/nar/gkt624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ranganathan R, Lu KP, Hunter T, Noel JP (1997) Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89:875–886. The very first structure of Pin1, highlighting interdomain contact.

    Article  CAS  PubMed  Google Scholar 

  • Sami F, Smet-Nocca C, Khan M, Landrieu I, Lippens G, Brautigan DL (2011) Molecular basis for an ancient partnership between prolyl isomerase Pin1 and phosphatase inhibitor-2. Biochemistry 50:6567–6578. doi:10.1021/bi200553e

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Segel I (1968) Biochemical calculations: how to solve mathematical problems in general biochemistry. John Wiley & Sons

  • Smet C, Wieruszeski JM, Buée L, Landrieu I, Lippens G (2005) Regulation of Pin1 peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-phosphorylated peptide of Tau protein. FEBS Lett 579:4159–4164. doi:10.1016/j.febslet.2005.06.048

  • Smet-Nocca C, Launay H, Wieruszeski JM, Lippens G, Landrieu I (2013) Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA. J Biomol NMR 55:323–337. doi:10.1007/s10858-013-9716-z

    Article  CAS  PubMed  Google Scholar 

  • Stukenberg PT, Kirschner MW (2001) Pin1 acts catalytically to promote a conformational change in Cdc25. Mol Cell 7:1071–1083. An incisive study establishing Pin1’s catalyic role in vivo and its ability to perturb the conformations of its protein substrates.

    Article  CAS  PubMed  Google Scholar 

  • Sudol M, Hunter T (2000) NeW wrinkles for an old domain. Cell 103:1001–1004

    Article  CAS  PubMed  Google Scholar 

  • Trunnell NB, Poon AC, Kim SY, Ferrell JE Jr (2011) Ultrasensitivity in the regulation of Cdc25C by Cdk1. Mol Cell 41:263–274. doi:10.1016/j.molcel.2011.01.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tzeng SR, Kalodimos CG (2013) Allosteric inhibition through suppression of transient conformational states. Nat Chem Biol 9:462–465. doi:10.1038/nchembio.1250

    Article  CAS  PubMed  Google Scholar 

  • van der Lee R et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631. doi:10.1021/cr400525m

    Article  PubMed Central  PubMed  Google Scholar 

  • Verdecia MA, Bowman ME, Lu KP, Hunter T, Noel JP (2000) Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 7:639–643

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Hart SA, Xu B, Mason MD, Goodell JR, Etzkorn FA (2003) Serine-cis-proline and serine-trans-proline isosteres: stereoselective synthesis of (Z)- and (E)-alkene mimics by Still-Wittig and Ireland-Claisen rearrangements. J Org Chem 68:2343–2349

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Xu B, Mullins AB, Neiler FK, Etzkorn FA (2004) Conformationally locked isostere of phosphoSer-cis-Pro inhibits Pin1 23-fold better than phosphoSer-trans-Pro isostere. J Am Chem Soc 126:15533–15542

    Article  CAS  PubMed  Google Scholar 

  • Wilson KA, Bouchard JJ, Peng JW (2013) Interdomain interactions support interdomain communication in human Pin1. Biochemistry. doi:10.1021/bi401057x

    Google Scholar 

  • Wintjens R, Wieruszeski J-M, Drobecq H, Rousselot-Pailley P, Buée L, Lippens G, Landrieu I (2001) 1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides. J Biol Chem 276:25150–25156. Defines intermolecular interactions between Pin1-WW and phosphopeptides in solution, including pCdc25C.

  • Xu GG, Etzkorn FA (2009) Pin1 as an anticancer drug target. Drug News Perspect 22:399–407. doi:10.1358/dnp.2009.22.7.1381751

    Article  CAS  PubMed  Google Scholar 

  • Yaffe MB et al (1997) Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278:1957–1960

    Article  CAS  PubMed  Google Scholar 

  • Zidek L, Novotny MV, Stone MJ (1999) Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Biol 6:1118–1121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JWP thanks Dr. Andrew T. Namanja, Dr. John S. Zintsmaster, Dr. Xingsheng Wang, Dr. Tao Peng, Dr. Jill J. Bouchard, Dr. Kimberly A. Wilson, Dr. Petra Rovó, Mr. Brendan J. Mahoney, Ms. Meiling Zhang, Dr. Jaroslav Zajicek, Dr. Felicia A. Etzkorn (VA Tech), Cheryl L. Schairer, and Shelby L. Peng for perseverance, inspiration, and useful discussions.

Compliance with Ethical Standards

Funding

This work was funded by the National Institutes of Health (NIH) Grant R01-GM083081 (JWP).

Conflict of interest

J.W. Peng declares no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Peng.

Additional information

This article is part of a Special Issue on 'The Role of Protein Dynamics in Allosteric Effects' edited by Gordon Roberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J.W. Investigating dynamic interdomain allostery in Pin1. Biophys Rev 7, 239–249 (2015). https://doi.org/10.1007/s12551-015-0171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-015-0171-9

Keywords

Navigation