Skip to main content
Log in

Discovery of allostery in PKA signaling

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Cyclic AMP (cAMP)-dependent protein kinase (PKA) was the second protein kinase to be identified, and the PKA catalytic (C)-subunit serves as a prototype for the large protein kinase superfamily that contains over 500 gene products. The protein kinases regulate many biological functions in eukaryotic cells and are now also a major therapeutic target. The discovery of PKA nearly 50 years ago was quickly followed by the identification of the regulatory subunits that bind cAMP and release the catalytic activity from the holoenzyme. Thus in PKA we see the convergence of two major signaling mechanisms—protein phosphorylation and second messenger signaling through cAMP. Crystallography provides a foundation for understanding function, and detailed knowledge of the structure of the isolated regulatory (R)- and catalytic (C)-subunits has been extremely informative. Yet it is the R2C2 holoenzyme that predominates in cells, and the allosteric features of PKA signaling can only be fully appreciated by seeing the full-length protein. The symmetry and the quaternary constraints that one R:C heterodimer exerts on the other in the holoenzyme simply are not present in the isolated subunits or even in the R:C heterodimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akimoto M, Selvaratnam R, McNicholl ET, Verma G, Taylor SS, Melacini G (2013) Signaling through dynamic linkers as revealed by PKA. Proc Natl Acad Sci USA 110(35):14231–14236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amieux PS, McKnight GS (2002) The essential role of RI alpha in the maintenance of regulated PKA activity. Ann N Y Acad Sci 968:75–95

    Article  CAS  PubMed  Google Scholar 

  • Bastidas AC, Wu J, Taylor SS (2015) Molecular features of product release for the PKA catalytic cycle. Biochemistry 54:2–10

  • Berman HM, Ten Eyck LF, Goodsell DS, Haste NM, Kornev A, Taylor SS (2005) The cAMP binding domain: an ancient signaling module. Proc Natl Acad Sci USA 102(1):45–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boras BW, Kornev A, Taylor SS, McCulloch AD (2014) Using Markov state models to develop a mechanistic understanding of protein kinase A regulatory subunit RIalpha activation in response to cAMP binding. J Biol Chem 289(43):30040–30051

    Article  CAS  PubMed  Google Scholar 

  • Brandon EP, Zhuo M, Huang YY, Qi M, Gerhold KA, Burton KA, Kandel ER, McKnight GS, Idzerda RL (1995) Hippocampal long-term depression and depotentiation are defective in mice carrying a targeted disruption of the gene encoding the RI beta subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci USA 92(19):8851–8855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brandon EP, Idzerda RL, McKnight GS (1997) PKA isoforms, neural pathways, and behaviour: making the connection. Curr Opin Neurobiol 7(3):397–403

    Article  CAS  PubMed  Google Scholar 

  • Brostrom CO, Corbin JD, King CA, Krebs EG (1971) Interaction of the subunits of adenosine 3′:5′-cyclic monophosphate-dependent protein kinase of muscle. Proc Natl Acad Sci USA 68(10):2444–2447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cummings DE, Brandon EP, Planas JV, Motamed K, Idzerda RL, McKnight GS (1996) Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A. Nature 382(6592):622–626

    Article  CAS  PubMed  Google Scholar 

  • Das R, Abu-Abed M, Melacini G (2006) Mapping allostery through equilibrium perturbation NMR spectroscopy. J Am Chem Soc 128(26):8406–8407

    Article  CAS  PubMed  Google Scholar 

  • Diller TC, Madhusudan, Xuong NH, Taylor SS (2001) Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: crystal structure of the type II beta regulatory subunit. Structure 9(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Erlichman J, Sarkar D, Fleischer N, Rubin CS (1980) Identification of two subclasses of type II cAMP-dependent protein kinases. Neural-specific and non-neural protein kinases. J Biol Chem 255(17):8179–8184

    CAS  PubMed  Google Scholar 

  • Francis SH, Corbin JD (1999) Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci 36(4):275–328

    Article  CAS  PubMed  Google Scholar 

  • Gill GN, Garren LD (1970) A cyclic-3′,5′-adenosine monophosphate dependent protein kinase from the adrenal cortex: comparison with a cyclic AMP binding protein. Biochem Biophys Res Commun 39(3):335–343

    Article  CAS  PubMed  Google Scholar 

  • Heller WT, Vigil D, Brown S, Blumenthal DK, Taylor SS, Trewhella J (2004) C subunits binding to the protein kinase A RI alpha dimer induce a large conformational change. J Biol Chem 279(18):19084–19090

    Article  CAS  PubMed  Google Scholar 

  • Herberg FW, Doyle ML, Cox S, Taylor SS (1999) Dissection of the nucleotide and metal-phosphate binding sites in cAMP-dependent protein kinase. Biochemistry 38(19):6352–6360

    Article  CAS  PubMed  Google Scholar 

  • Hofmann F, Beavo JA, Bechtel PJ, Krebs EG (1975) Comparison of adenosine 3′:5′-monophosphate-dependent protein kinases from rabbit skeletal and bovine heart muscle. J Biol Chem 250(19):7795–7801

    CAS  PubMed  Google Scholar 

  • Horvath A, Bertherat J, Groussin L, Guillaud-Bataille M, Tsang K, Cazabat L, Libe R, Remmers E, Rene-Corail F, Faucz FR, Clauser E, Calender A, Bertagna X, Carney JA, Stratakis CA (2010) Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha of protein kinase A (PRKAR1A): an update. Hum Mutat 31(4):369–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang YY, Kandel ER, Varshavsky L, Brandon EP, Qi M, Idzerda RL, McKnight GS, Bourtchouladze R (1995) A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell 83(7):1211–1222

    Article  CAS  PubMed  Google Scholar 

  • Ilouz R, Bubis J, Wu J, Yim YY, Deal MS, Kornev AP, Ma Y, Blumenthal DK, Taylor SS (2012) Localization and quaternary structure of the PKA RIbeta holoenzyme. Proc Natl Acad Sci USA 109(31):12443–12448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kannan N, Haste N, Taylor SS, Neuwald AF (2007a) The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module. Proc Natl Acad Sci USA 104(4):1272–1277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G (2007b) Structural and functional diversity of the microbial kinome. PLoS Biol 5(3):e17

    Article  PubMed Central  PubMed  Google Scholar 

  • Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC (1960) Structure of myoglobin: a three-dimensional Fourier synthesis at 2 A. resolution. Nature 185(4711):422–427

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Xuong NH, Taylor SS (2005) Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 307(5710):690–696

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Cheng CY, Saldanha SA, Taylor SS (2007) PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Cell 130(6):1032–1043

    Article  CAS  PubMed  Google Scholar 

  • Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253(5018):407–414

    Article  CAS  PubMed  Google Scholar 

  • Kornev AP, Taylor SS, Ten Eyck LF (2008) A generalized allosteric mechanism for cis-regulated cyclic nucleotide binding domains. PLoS Comput Biol 4(4):e1000056

    Article  PubMed Central  PubMed  Google Scholar 

  • Krebs EG, Graves DJ, Fischer EH (1959) Factors affecting the activity of muscle phosphorylase B kinase. J Biol Chem 234(11):2867–2873

    CAS  PubMed  Google Scholar 

  • Linglart A, Menguy C, Couvineau A, Auzan C, Gunes Y, Cancel M, Motte E, Pinto G, Chanson P, Bougneres P, Clauser E, Silve C (2011) Recurrent PRKAR1A mutation in acrodysostosis with hormone resistance. N Engl J Med 364(23):2218–2226

    Article  CAS  PubMed  Google Scholar 

  • Malmstrom R, Kornev AP, Taylor SS, Amaro R (2015) Allostery through conformational selection: cAMP regulation of the cyclic-nucleotide binding domain in PKA. Nat Commun (In press)

  • Martin BR, Deerinck TJ, Ellisman MH, Taylor SS, Tsien RY (2007) Isoform-specific PKA dynamics revealed by dye-triggered aggregation and DAKAP1alpha-mediated localization in living cells. Chem Biol 14(9):1031–1042

    Article  CAS  PubMed  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185(4711):416–422

    Article  CAS  PubMed  Google Scholar 

  • Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 232(2):1065–1076

    CAS  PubMed  Google Scholar 

  • Rinaldi J, Wu J, Yang J, Ralston CY, Sankaran B, Moreno S, Taylor SS (2010) Structure of yeast regulatory subunit: a glimpse into the evolution of PKA signaling. Structure 18(11):1471–1482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romano RA, Kannan N, Kornev AP, Allison CJ, Taylor SS (2009) A chimeric mechanism for polyvalent trans-phosphorylation of PKA by PDK1. Protein Sci 18(7):1486–1497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosen OM, Rubin CS, Erlighman J (1975) Properties of the cyclid AMP-dependent protein kinase from bovine and porcine heart. Adv Enzym Regul 13:173–185

    Article  CAS  Google Scholar 

  • Schreyer SA, Cummings DE, McKnight GS, LeBoeuf RC (2001) Mutation of the RIIbeta subunit of protein kinase A prevents diet-induced insulin resistance and dyslipidemia in mice. Diabetes 50(11):2555–2562

    Article  CAS  PubMed  Google Scholar 

  • Smith FD, Reichow SL, Esseltine JL, Shi D, Langeberg LK, Scott JD, Gonen T (2013) Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation. Elife 2:e01319

    PubMed Central  PubMed  Google Scholar 

  • Su Y, Dostmann WR, Herberg FW, Durick K, Xuong NH, Ten Eyck L, Taylor SS, Varughese KI (1995) Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science 269(5225):807–813

    Article  CAS  PubMed  Google Scholar 

  • Tao M, Salas ML, Lipmann F (1970) Mechanism of activation by adenosine 3′:5′-cyclic monophosphate of a protein phosphokinase from rabbit reticulocytes. Proc Natl Acad Sci USA 67(1):408–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor SS, Ilouz R, Zhang P, Kornev AP (2012) Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol 13(10):646–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vigil D, Blumenthal DK, Heller WT, Brown S, Canaves JM, Taylor SS, Trewhella J (2004) Conformational differences among solution structures of the type Ialpha, IIalpha and IIbeta protein kinase A regulatory subunit homodimers: role of the linker regions. J Mol Biol 337(5):1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Vigil D, Blumenthal DK, Taylor SS, Trewhella J (2006) Solution scattering reveals large differences in the global structures of type II protein kinase A isoforms. J Mol Biol 357(3):880–889

    Article  CAS  PubMed  Google Scholar 

  • Walsh DA, Perkins JP, Krebs EG (1968) An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem 243(13):3763–3765

    CAS  PubMed  Google Scholar 

  • Wang YH, Scott JD, McKnight GS, Krebs EG (1991) A constitutively active holoenzyme form of the cAMP-dependent protein kinase. Proc Natl Acad Sci USA 88(6):2446–2450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5(12):959–970

    Article  CAS  PubMed  Google Scholar 

  • Wong TH, Chiu WZ, Breedveld GJ, Li KW, Verkerk AJ, Hondius D, Hukema RK, Seelaar H, Frick P, Severijnen LA, Lammers GJ, Lebbink JH, van Duinen SG, Kamphorst W, Rozemuller AJ, Bakker EB, Neumann M, Willemsen R, Bonifati V, Smit AB, van Swieten J (2014) PRKAR1B mutation associated with a new neurodegenerative disorder with unique pathology. Brain 137(Pt 5):1361–1373

    Article  PubMed  Google Scholar 

  • Wu J, Brown SH, von Daake S, Taylor SS (2007) PKA type IIalpha holoenzyme reveals a combinatorial strategy for isoform diversity. Science 318(5848):274–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zawadzki KM, Taylor SS (2004) cAMP-dependent protein kinase regulatory subunit type IIbeta: active site mutations define an isoform-specific network for allosteric signaling by cAMP. J Biol Chem 279(8):7029–7036

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Smith-Nguyen EV, Keshwani MM, Deal MS, Kornev AP, Taylor SS (2012) Structure and allostery of the PKA RIIbeta tetrameric holoenzyme. Science 335(6069):712–716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the Taylor laboratory whose members have for many years carried out the interdisciplinary work, both structural and biochemical, that has allowed us to achieve an understanding of these proteins. We especially acknowledge earlier discussions and encouragement from Professor Shmuel Shaltiel, the Weizmann Institute, who never let us forget the importance of the holoenzyme after we solved the first crystal structures of the C-subunit. We are also enormously grateful for discussions and encouragement and guidance from Professor Jean Pierre Changeux whose visits to UCSD over the past 7 years have helped us to understand and appreciate and, hopefully in the end, to visualize the mechanistic details of the allosteric activation of PKA. Obviously we are all still learning and challenges remain!

Compliance with Ethical Standards

Funding

This study was funded by NIH grants GM34921 and GM19301 to SST and from the Howard Hughes Medical Institute to SST.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by the author, with the exception of those carried out on electric fish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan S. Taylor.

Additional information

This article is part of a Special Issue on ‘The Role of Protein Dynamics in Allosteric Effects’ edited by Gordon Roberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Kornev, A.P., Wu, J. et al. Discovery of allostery in PKA signaling. Biophys Rev 7, 227–238 (2015). https://doi.org/10.1007/s12551-015-0170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-015-0170-x

Keywords

Navigation