Skip to main content

Advertisement

Log in

A new Rhaetian plant assemblage from Zilanba, the northern Sichuan Basin, South China

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

Triassic and Jurassic strata are thick and widely distributed in the Sichuan Basin, South China. In particular, the continental Upper Triassic Xujiahe Formation is well-exposed in this region, yielding rich assemblages of fossil plants. Here, a new Rhaetian fossil assemblage is reported from Zilanba in the Guangyuan area, northern Sichuan Basin. In this locality, 29 species of fossil plants belonging to 17 genera have been newly collected and identified within Member III of the Xujiahe Formation. Based on the floral assemblages and previous magnetostratigraphic and palynostratigraphic studies, the host strata are considered Rhaetian in age. This flora in the Guangyuan area is dominated by Cycadales and Bennettitales but also contains abundant ferns and less common sphenopsids, conifers and other gymnosperms. The occurrence of some climate-diagnostic plants, such as Dipteridaceae, Anthrophyopsis and Ptilozamites, indicate that this area experienced a humid and warm tropical or subtropical climate during the Rhaetian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The dataset (all specimens) analysed during the current study are available in the fossil collection of Nanjing Institute of Geology and Palaeotology, Chinese Academy of Science, Nanjing, China (NIGPAS), and open for public accessibility. If there is any difficulty for accessing, the corresponding author is willing to help. The serial number of every specimen was listed in the manuscript. http://bbg.nigpas.ac.cn/#/index.

References

  • Abbink, O.A., Konijnenburg-van Cittert, J.H.A., Van & Visscher, H. (2004). A sporomorph ecogroup model for the Northwest European Jurassic–Lower Cretaceous I: Concepts and framework. Netherlands Journal of Geosciences–Geologie en Mijnbouw, 83(1), 17–31. https://doi.org/10.1017/S0016774600020436.

  • Atkinson, J.W., Wignall, P.B., Morton, J.D., & Aze, T. (2019). Body size changes in bivalves of the family Limidae in the aftermath of the end-Triassic mass extinction: the Brobdingnag effect. Palaeontology, 62(4), 561–582. https://doi.org/10.1111/pala.12415.

  • Barbacka, M., Pacyna, G., Kocsis, A.T., Jarzynka, A., Ziaja, J., & Bodor, E. (2017). Changes in terrestrial floras at the Triassic–Jurassic Boundary in Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 480, 80–93. https://doi.org/10.1016/j.palaeo.2017.05.024.

  • Bomfleur, B., & Kerp. H. (2010). The first record of the dipterid fern leaf Clathropteris Brongniart from Antarctica and its relation to Polyphacelus stormensis Yao, Taylor et Taylor nov. emend. Review of Palaeobotany and Palynology, 160, 143–153. https://doi.org/10.1016/j.revpalbo.2010.02.003.

  • Bonis, N.R., & Kürschner, W.M. (2012). Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary. Paleobiology, 38(2), 240–264. https://doi.org/10.1666/09071.1.

  • Boyce, C.K. (2005). Patterns of segregation and convergence in the evolution of fern and seed plant leaf morphologies. Paleobiology, 31, 117–140. https://doi.org/10.1666/0094-8373(2005)031<0117:POSACI>2.0.CO;2.

  • Choo, T., Escapa, I., & Bomfleur, B. (2016). Monotypic colonies of Clathropteris meniscioides (Dipteridaceae) from the Early Jurassic of central Patagonia, Argentina: implications for taxonomy and palaeoecology. Palaeontographica. Abteilung B, Palaophytologie, 294, 85–109. https://doi.org/10.1127/palb/294/2016/85.

  • Clemmensen, L.B., Kent, D.V., & Jenkins, F.A.Jr. (1998). A Late Triassic lake system in East Greenland: facies, depositional cycles and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 140, 135–159. https://doi.org/10.1016/S0031-0182(98)00043-1.

  • Crowley, T.J., Hyde, W.T., & Short, D.A. (1989). Seasonal cycle variations on the supercontinent of Pangaea. Geology, 17, 457–460. https://doi.org/10.1130/0091-7613(1989)017<0457:SCVOTS>2.3.CO;2.

  • Deng, S.H. (2007). Palaeoclimatic implications of main fossil plants of the Mesozoic. Journal of Palaeogeography, 9(6), 559–574. [in Chinese with English abstract].

  • Duan, S. (1987). A comparison between the Upper Triassic floras of China and the Rhaeto-Liassic floras of Europe and East Greenland. Lethaia, 20, 177–184.

  • Dzik, J., & Sulej, T. (2007). A review of the early Late Triassic Krasiejów biota from Silesia, Poland. Phytopatologia Polonica, 64, 3–27.

  • Fawcett, P.J., Barron, E.J., Robinson, V.D., & Katz, B.J. (1994). The climatic evolution of India and Australia from the Late Permian to Mid-Jurassic: a comparison of climate model results with the geologic record. In G.D. Klein (Ed.), Pangea: paleoclimate, tectonics and sedimentation during accretion, zenith and break-up of a supercontinent (pp. 139–157). Geological Society of America, Special Paper, 288.

  • Götz, A.E., & Uhl, D. (2022). Triassic micro-charcoal as a promising puzzle piece in palaeoclimate reconstruction: An example from the Germanic Basin. Annales Societatis Geologorum Poloniae, 92, 219–231. https://doi.org/10.14241/asgp.2022.088.

  • Guignard, G., Wang, Y.D., Ni, Q., Tian, N., & Jiang, Z.K. (2009). A dipteridaceous fern with in situ spores from the Lower Jurassic in Hubei, China. Review of Palaeobotany and Palynology, 156(1–2), 104–115. https://doi.org/10.1016/j.revpalbo.2008.09.004.

  • Harris, T.M. (1937). The fossil flora of Scoresby Sound, East Greenland. Part 5: Stratigraphic relations of the plant beds. Meddelelser om Gronland, 112, 1–114.

  • Harris, T.M. (1961). The Yorkshire Jurassic flora. London: Trustees of the British Museum (Natural History).

  • Heimdal, T.H., Jones, M.T., & Svensen, H.H. (2020). Thermogenic carbon release from the Central Atlantic magmatic province caused major end-Triassic carbon cycle perturbations. Proceedings of the National Academy of Science of United States of America, 117(22), 11968–11974. https://doi.org/10.1073/pnas.2000095117.

  • Holstein, B., (2004). Palynologische Untersuchungen der Kössener Schichten (Rhät, Obertrias). Jahrbuch der Geologischen Bundesanstalt, 144(3/4), 261–365.

  • Huang, Q.S. (1992). Plants. In H.F. Yin, F.Q. Yang, Q.S. Huang, H.S. Yang, & X.L. Lai (Eds.), The Triassic of Qinling Mountains and Neighboring Areas (pp. 174–179. Wuhan: China University of Geosciences Press. [in Chinese].

  • Huang, Q.S. (1995). Palaeoclimate and coal-forming characteristics of the Late Triassic Xujiahe Stage in northern Sichuan. Geological Review, 41(1), 92–99. [in Chinese with English abstract].

  • Huang, Q.S., & Lu, S.M. (1992). The primary studies on the palaeontology of the Late Triassic Xujiahe flora in eastern Sichuan. Earth Science: Journal of China University of Geosciences, 17(3), 329–335. [in Chinese with English abstract].

  • Jiang, S., Tang, X.L., Cai, D.S., Xue, G., He, Z.L., Long, S.X., Peng, Y.M., Gao, B., Xu, Z.Y., & Dahdah, N. (2017). Comparison of marine, transitional, and lacustrine shales: A case study from the Sichuan Basin in China. Journal of Petroleum Science and Engineering, 150, 334–347. https://doi.org/10.1016/j.petrol.2016.12.014.

  • Jacobs, B.F. (1999). Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 145(1–3), 231–250. https://doi.org/10.1016/S0031-0182(98)00102-3.

  • Konijnenburg-van Cittert, J.H.A. van (2002). Ecology of some Late Triassic to Early Cretaceous ferns in Eurasia. Review of Palaeobotany and Palynology, 119, 113–124. https://doi.org/10.1016/S0034-6667(01)00132-4.

  • Kramer, K.U. (1990). Dipteridaceae. In K.U. Kramer & P.S. Green (Eds.), The Families and Genera of Vascular Plants, Pteridophytes and Gymnosperms 1 (pp. 99–101). Berlin: Springer.

  • Kustatscher, E., Ash, S.R., Karasev, E., Pott, C., Vajda, V., Yu, J.X., & McLoughlin, S. (2018). Flora of the Late Triassic. In L.H. Tanner (Ed.), The Late Triassic World: Earth in a Time of Transition (pp. 545–622). Heidelberg: Springer International Publishing AG.

  • Li, L.Q., & Wang, Y.D. (2016). Late Triassic palynofloras in the Sichuan Basin, South China: Synthesis and perspective. Palaeoworld, 25(2), 212–238. https://doi.org/10.1016/j.palwor.2015.11.009.

  • Li, L.Q., Wang, Y.D., Liu, Z.S., Zhou, N., & Wang, Y. (2016). Late Triassic palaeoclimate and palaeoecosystem variations inferred by palynological record in the northeastern Sichuan Basin, China. PalZ, 90, 327–348. https://doi.org/10.1007/s12542-016-0309-5.

  • Li, L.Q., Wang, Y.D., Vajda, V., & Liu, Z.S. (2018). Late Triassic ecosystem variations inferred by palynological records from Hechuan, southern Sichuan Basin, China. Geological Magazine, 155(8), 1793–1810. https://doi.org/10.1017/S0016756817000735.

  • Li, L.Q., Wang, Y.D., Kürschner, W.M., Ruhl, M., & Vajda, V. (2020). Palaeovegetation and palaeoclimate changes across the Triassic–Jurassic transition in the Sichuan Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 556, 109891. https://doi.org/10.1016/j.palaeo.2020.109891.

  • Li, P.J. (1964). Fossil plants from the Hsuchiaho Series of Kwangyuan, Northern Szechuan. Memoirs of the Institute of Geology and Palaeontology, Academia Sinica, 3, 101–162. [in Chinese with English summary].

  • Li, Y., He, P., Yan, Z.K., Dong, S.L., & Tao, X.F. (2010). Dynamics of Late Triassic Longmenshan foreland basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 37, 401–411.

  • Li, M.S., Zhang, Y., Huang, C.J., Ogg, J., Hinnov, L., Wang, Y.D., Zou, Z.Y., & Li, L.Q. (2017a). Astronomical tuning and magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: implications for the Late Triassic time scale. Earth and Planetary Science Letters, 475, 207–223. https://doi.org/10.1016/j.epsl.2017.07.015.

  • Li, Q.J., An, P.C., Li, J., Zhao, Z.R., Wu, J.Y., Wang, Y.D., Zhu, Y.T., & Ding, S.T. (2017b). Cuticular structure of Storgaardia Harris from the Middle Jurassic of Northwest China and its systematic and biogeographical significances. Palaeoworld, 16(1), 149–158. https://doi.org/10.1016/j.palwor.2016.04.005.

  • Lindström, S., & Erlström, M. (2006). The late Rhaetian transgression in southern Sweden: Regional (and global) recognition and relation to the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 339–372. https://doi.org/10.1016/j.palaeo.2006.04.006.

  • Liu, S.G., Yang, Y., Deng, B., Zhong, Y., Wen, L., Sun, W., Li, Z.W., Jansa, L., Li, J.X., Song, J.M., Zhang, X.H., & Peng, H.L. (2021). Tectonic evolution of the Sichuan Basin, southwest China. Earth–Science Reviews, 213, 103470. https://doi.org/10.1016/j.earscirev.2020.103470.

  • Liu, Z.S., Li, L.Q., & Wang, Y.D. (2015a). Late Triassic spore-pollen assemblage from Xuanhan of Sichuan. China. Acta Micropalaeontologica Sinica, 32(1), 43–62. [in Chinese with English abstract]

  • Liu, Z.S., Li, L.Q., & Wang, Y.D. (2015b). Late Triassic spore-pollen assemblage from the Xujiahe Formation in Hechuan of Chongqing, China. Acta Plalaeontologica Sinica, 54(3), 279–304. [in Chinese with English abstract]

  • Lu, N., Xie, X.P., Wang, Y.D., & Li, L.Q. (2015). The analysis of sedimentary environmental evolution of the T3x/T2l boundary transition in Qilixia of Xuanhan, Sichuan. Acta Sedimentologica Sinica, 33(6), 1149–1158. [in Chinese with English abstract]

  • Lu, N., Wang, Y.D., Popa, M.E., Xie, X.P., Li, L.Q., Xi, S.N., Xin, C.L., & Deng, C.T. (2019). Sedimentological and paleoecological aspects of the Norian–Rhaetian transition (Late Triassic) in the Xuanhan area of the Sichuan Basin, Southwest China. Palaeoworld, 28(3), 334–345. https://doi.org/10.1016/j.palwor.2019.04.006.

  • Lu, N., Wang, Y.D., Xu Y.Y., Li, L.Q., Xie, X.P., Popa, M.E., Chen, H.Y., Ruhl, M., & Kürschner, W.M. (2023). Oscillations of a fluvial-lacustrine system and its ecological response prior to the end-Triassic: Evidence from the eastern Tethys region. Geological Journal, 58, 1239–1255. https://doi.org/10.1002/gj.4658.

  • Lucas, S.G. (2013). End-Triassic extinction. In N. MacLeod (Ed.), Grzimek’s Animal Life Encyclopedia: Extinction (pp. 475–486). Detroit: Gale.

  • Martindale, R.C., Berelson, W.M., Corsetti, F.A., Bottjer, D.J., & West, A.J. (2012). Constraining carbonate chemistry at a potential ocean acidification event (the Triassic–Jurassic boundary) using the presence of corals and coral reefs in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352, 114–123. https://doi.org/10.1016/j.palaeo.2012.06.020.

  • McElwain, J.C., Beerling, D.J., & Woodward, I. (1999). Fossil plants and global warming at the Triassic–Jurassic boundary. Science, 285(5432), 1386–1390. https://doi.org/10.1126/science.285.5432.1386.

  • McElwain, J.C., Popa, M.E., Hesselbo, S.P., Haworth, M., & Surlyk, F. (2007). Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Palaeobiology, 33(4), 547–573. https://doi.org/10.1666/06026.1.

  • McKie, T., & Williams, B. (2009). Triassic palaeogeography and fluvial dispersal across the northwest European Basins. Geological Journal, 44, 711–741. https://doi.org/10.1002/gj.1201.

  • Parrish, J.T. (1993). Climate of the supercontinent Pangea. The Journal of Geology, 101, 215–233. https://doi.org/10.1086/648217.

  • Pole, M., Wang, Y.D., Bugdaeva, E.V., Dong, C., Tian, N., Li, L.Q., & Zhou, N. (2016). The rise and demise of Podozamites in east Asia—An extinct conifer life style. Palaeogeography, Palaeoclimatology, Palaeoecology, 464, 97–109. https://doi.org/10.1016/j.palaeo.2016.02.037.

  • Pole, M., Wang, Y.D., Dong, C., Xie, X.P., Tian, N., Li, L.Q., Zhou, N., Lu, N., Xie, A.W., & Zhang, X.Q. (2018). Fires and storms—a Triassic–Jurassic transition section in the Sichuan Basin, China. In S. M. Slater, E. Kustatscher, V. Vajda (Eds.) Jurassic biodiversity and terrestrial environments. Palaeobiodiversity and Palaeoenvironment, 98, 29–47. https://doi.org/10.1007/s12549-017-0315-y.

  • Popa, M.E. (2011). Field and laboratory techniques in plant compressions: an integrated approach. Acta Palaeontologica Romaniae, 7, 279–283.

  • Popa, M.E., & McElwain, J.C. (2009). Bipinnate Ptilozamites nilssonii from Jameson Land and new considerations on the genera Ptilozamites Nathorst 1878 and Ctenozamites Nathorst 1886. Review of Palaeobotany and Palynology, 153, 386–393. https://doi.org/10.1016/j.revpalbo.2008.10.007.

  • Qian, L.J., Shi, Z.Q., Li, Z.W., & Qu, L.H. (2010). Fossil wood of the Upper Triassic Xujiahe Formation on the Western Margin of Sichuan Basin: implication for palaeoclimate. Acta Sedimentologica Sinica, 28(2), 324–330. [in Chinese with English abstract]

  • Raunkiaer, C. (1934). The life forms of plants and statistical plant geography (pp. 1–632). Oxford: Clarendon Press.

  • Raup, D.M., & Sepkoski Jr., J.J. (1982). Mass extinctions in the marine fossil record. Science, 215(4539), 1501–1503. https://doi.org/10.1126/science.215.4539.1501.

  • Schenk, A. (1883). Jurassische Pflanzen. In F.V. Richthofen (Ed.), China (pp. 245–267). Zehnte Abhandlung 4.

  • Schenk, A. (1884). Die während der Reise des Grafan Bela Szechenyi in China gesammelten fossilen Pflanzen. Palaeontographica, 14, 163–182.

  • Sepkoski Jr., J.J. (1996). Patterns of Phanerozoic extinction: a perspective from global databases. In O.H. Walliser (Ed.), Global Events and Event Stratigraphy in the Phanerozoic (pp. 35–51). Berlin and Heidelberg: Springer–Verlag.

  • Seward, A.C. (1919). Ginkgoales, Coniferales, Gnetales. Fossil Plants: A Textbook for Students of Botany and Geology (pp. 543). Cambridge: Cambridge University Press.

  • Shen, J., Yin, R.S., Zhang, S., Algeo, T.J., Bottjer, D.J., Yu, J.X., Xu, G.Z., Penman, D., Wang, Y.D., Li, L.Q., Shi, X., Planavsky, N.J., Feng, Q.L., & Xie, S. (2022). Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic–Jurassic transition. Nature Communications, 13, 299. https://doi.org/10.1038/s41467-022-27965-x.

  • Song, Y., Algeo, T.J., Wu, W.J., Luo, G.M., Li, L.Q., Wang, Y.D., & Xie, S.C. (2020). Distribution of pyrolytic PAHs across the Triassic–Jurassic boundary in the Sichuan Basin, southwestern China: Evidence of wildfire outside the Central Atlantic Magmatic Province. Earth–Science Reviews, 201, 102970. https://doi.org/10.1016/j.earscirev.2019.102970.

  • Stockey, R.A., Rothwell, G.W., & Little, S.A. (2006). Relationships among fossil and living Dipteridaceae: anatomically preserved Hausmannia from the lower Cretaceous of Vancouver Island. International Journal of Plant Sciences, 167: 649663.

  • Sun, G. (1995). Late Triassic flora. In H.H. Lee, Z.Y. Zhou, C.Y. Cai, G. Sun, Y.S. Ou, & L.H. Deng (Eds.), Fossil Floras of China through the Geological Ages (pp. 241–246). Guangzhou: Guangdong Science and Technology Press. [in Chinese].

  • Tanner, L.H. (2018). Climates of the Late Triassic: Perspectives, proxies and problems. In L.H. Tanner (Ed.), The Late Triassic World: Earth in a Time of Transition (pp. 59–90). Heidelberg: Springer International Publishing AG.

  • Tian, N., Wang, Y.D., Philippe, M., Li, L.Q., Xie, X.P., & Jiang, Z.K. (2016). New record of fossil wood Xenoxylon from the Late Triassic in the Sichuan Basin, southern China and its palaeoclimate implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 464, 65–75. https://doi.org/10.1016/j.palaeo.2016.02.006.

  • Trotter, J.A., Williams, I.S., Nicora, A., Mazza, M., & Rigo, M. (2015). Long-term cycles of Triassic climate change: a new δ18O record from conodont apatite. Earth and Planetary Science Letters, 415, 165–174. https://doi.org/10.1016/j.epsl.2015.01.038.

  • Tomašových, A., & Siblík, M. (2007). Evaluating compositional turnover of brachiopod communities during the end-Triassic mass extinction (Northern Calcareous Alps): Removal of dominant groups, recovery and community reassembly. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 170–200. https://doi.org/10.1016/j.palaeo.2006.06.028.

  • Vajda, V., Pucetaite, M., McLoughlin, S., Engdahl, A., Heimdahl, J., & Uvdal, P. (2017). Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships. Nature Ecology and Evolution, 1, 1093–1099. https://doi.org/10.1038/s41559-017-0224-5.

  • Wang, Y.D., Fu, B.H., Xie, X.P., Huang, Q.S., Li, K., Li, G., Liu, Z.S., Yu, J.X., Pan, Y.H., Tian, N., & Jiang, Z.K. (2010). The Terrestrial Triassic and Jurassic Systems in the Sichuan Basin, China (pp. 216). Hefei: University of Science and Technology of China Press. [in Chinese and English]

  • Wang, Y.D., Li, L.Q., Guignard, G., Dilcher, D., Xie, X.P., Tian, N., Zhou, N., & Wang, Y. (2015). Fertile structures with in situ spores of a dipterid fern from the Triassic in southern China. Journal of Plant Research, 128, 445–457. https://doi.org/10.1007/s10265-015-0708-9.

  • Webb, L.J. (1959). A physiognomic classification of Australian rain forests. The Journal of Ecology, 47, 551–570. https://doi.org/10.2307/2257290.

  • Webb, J. (1982). Triassic species of Dictyophyllum from Eastern Australia. Alcheringa, 6, 79–91. https://doi.org/10.1080/03115518208566988.

  • Whiteside, J.H., & Ward, P.D. (2011). Ammonoid diversity and disparity track episodes of chaotic carbon cycling during the early Mesozoic. Geology, 39(2), 99–102. https://doi.org/10.1130/G31401.1.

  • Wu, S.Q. (1999). Upper Triassic plants from Sichuan. Bulletin of Nanjing Institute of Geology and Palaeontology, Academia Sinica, 14, 1–69. [in Chinese with English summary]

  • Xiong, X.Q., Huang, Q.S., Yu, J.X., & Chen, J.H. (2009). Late Triassic Anyuan Flora from Northeast Jiangxi Province, South China. Earth Science–Journal of China University of Geosciences, 34, 405–411. [in Chinese with English abstract].

  • Xu, Y.Y., Popa, M.E., Zhang, T.S., Lu, N., Zeng, J.L., Zhang, X.Q., Li, L.Q., & Wang, Y.D. (2021). Re-appraisal of Anthrophyopsis (Gymnospermae): New material from China and global fossil records. Review of Palaeobotany and Palynology, 292, 104475. https://doi.org/10.1016/j.revpalbo.2021.104475.

  • Xu, Y.Y., Popa, M.E., Zhang, X.Q., Kustatscher, E., Lu, N., Li, L.Q., Zeng, J.L., Zhang, T.S., & Wang, Y.D. (2022). Ptilozamites chinensis (Pteridospermopsida) from the Late Triassic of South China with considerations on its intraspecific variability and palaeoenvironmental preferences. Review of Palaeobotany and Palynology, 304, 104727. https://doi.org/10.1016/j.revpalbo.2022.104727.

  • Xu, Y.Y., Wang, Y.D., & McLoughlin, S. (2023). How similar are the venation and cuticular characters of Glossopteris, Sagenopteris and Anthrophyopsis? Review of Palaeobotany and Palynology, 316, 104934. https://doi.org/10.1016/j.revpalbo.2023.104934.

  • Yang, X.H. (1978). Mesozoic plants. In Chengdu Institute of Geology and Mineral Resources (Southeast China Institute of Geological Science) (Ed.), Palaeontological Atlas of Fossils of Southwestern China: Sichuan, Part II (pp. 469–536). Beijing: Geological Publishing House. [in Chinese]

  • Ye, M.N., Liu, X.Y., Huang, G.Q., Chen, L.X., Peng, S.J., Xu, A.F., & Zhang, B.X. (1986). Late Triassic and Early–Middle Jurassic Fossil Plants from Northeastern Sichuan (pp. 141). Hefei: Anhui Science and Technology Publishing House. [in Chinese]

  • Zhou, N., Wang, Y.D., Li, L.Q., & Zhang, X.Q. (2016). Diversity variation and tempo-spatial distributions of the Dipteridaceae ferns in the Mesozoic of China. Palaeoworld, 25(2), 263–286. https://doi.org/10.1016/j.palwor.2015.11.008.

  • Zhou, N., Xu, Y.Y., Li, L.Q., Lu, N., An, P.C., Popa, M.E., Kürschner, W.M., Zhang, X.L., & Wang, Y.D. (2021). Pattern of vegetation turnover during the end-Triassic mass extinction: Trends of fern communities from South China with global context. Global and Planetary Change, 205, 103585.https://doi.org/10.1016/j.gloplacha.2021.103585.

  • Zhou, T.S. (1978). Mesozoic coal-bearing strata and fossil plants from Fujian. In Editorial Committee of Chinese Academy of Geological Sciences (Ed.), Professional papers of stratigraphy and Palaeontology of the Geological Society of China (pp. 88–134). Beijing: Geological Publishing House. [in Chinese]

  • Zhou, Z.Y. (1989). Late Triassic plants form Shaqiao, Hengyang, Hunan Province. Palaeontologia Cathayana, 4, 131–197.

  • Zhu, M., Chen, H.L., Zhou, J., & Yang, S.F. (2017). Provenance change from the Middle to Late Triassic of the southwestern Sichuan basin, Southwest China: Constraints from the sedimentary record and its tectonic significance. Tectonophysics, 700–701, 90–107. https://doi.org/10.1016/j.tecto.2017.02.006.

Download references

Acknowledgements

We thank Mr. Huaxin Zhang, Mr. Yaoyu Li (Southwest Petroleum University), Dr. Xiaoqing Zhang and Mr. Hongyu Chen (NIGPAS) for support during the field work. Many thanks to Dr. Evelyn Kustatscher and Dr. Ning Tian, for their advice and constructive comments on the manuscript.

Funding

This study is financially supported by the National Natural Science Foundation of China (grant numbers 42330208, 42072009, 41972120, 42172129), the Stratigraphic Priority Program (B) of the Chinese Academy of Sciences (grant number XDB 2610302), the Programs from State Key Lab of Palaeobiology and Stratigraphy (20191103, 173131, 213112), and CSC (grant number 202204910396). S.M. is supported by grants from the Swedish Research Council (VR grant numbers 2018-04527 and 2022-03920).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mihai Emilian Popa or Yongdong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Popa, M.E., McLoughlin, S. et al. A new Rhaetian plant assemblage from Zilanba, the northern Sichuan Basin, South China. Palaeobio Palaeoenv (2024). https://doi.org/10.1007/s12549-024-00599-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12549-024-00599-1

Keywords

Navigation