Skip to main content
Log in

The impacts of diagenesis on the geochemical characteristics and Color Alteration Index of conodonts

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The conodont Color Alteration Index (CAI) has been widely used to determine the maximum temperature in carbonate rocks, despite recognition that conodont colour can be affected by other factors, such as diagenesis. Measurements of trace element characteristics in conodonts of varying CAI (1.5–6.0) from the Canadian Cordillera show that those specimens with the most anomalous CAI with respect to independent estimates of maximum temperature also have the highest concentrations of iron (> 3000 ppm). The adsorption of transition metals such as iron onto bioapatite crystals and permineralization by their oxides in conodont elements are herein proposed as mechanisms for the modification of CAI during diagenesis. Furthermore, the trace element characteristics of conodonts, primarily those of the lanthanide, or rare earth element (REE) series, have frequently been used as a proxy for palaeoceanographic conditions, including anoxic events. However, the impact of early diagenetic processes post-burial obscures this marine signal, and instead, the trace element characteristics of conodonts likely reflect the characteristics of pore waters or diagenetic fluids. Several geochemical ‘tools’ have been proposed to test for such overprinting of palaeoceanographic information, including Y/Ho vs. ΣREE, MREE/MREE*, U concentration, and La/Yb. However, REE and Raman structural characteristics in a suite of conodonts from the Canadian Cordillera indicate that these ‘tools’ cannot be systematically applied. The majority of conodont specimens analysed in this study appear to have been affected by post-burial diagenetic alteration using one or more of the ‘tools’, but seem to be unaltered when investigated using other ‘tools’. Additionally, several specimens which appear to be diagenetically unaltered when using the metrics of the geochemical ‘toolbox’ exhibit diagenetically induced structural changes. The geochemical ‘tools’ are thus unable to discriminate between diagenetic alteration induced before and after burial, and they should therefore be accompanied by structural analyses if REE characteristic of conodonts are used to infer palaeoceanographic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armstrong, H. A., & Purnell, M. A. (1993). Thermal maturation of the Lower Carboniferous strata of the Northumberland Trough and Tweed Basin from conodont colour alteration index (CAI) data. Proceedings of the Yorkshire Geological Society, 49, 335–343.

    Article  Google Scholar 

  • Armstrong, H. A., & Strens, M. R. (1987). Contact metamorphism of conodonts as a test of colour alteration index temperatures. In R. L. Austin (Ed.), Conodonts: Investigative techniques and applications (pp. 203–208). Chichester: Ellis Horwood.

    Google Scholar 

  • Armstrong, H. A., Pearson, D. G., & Griselin, M. (2001). Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements. Geochimica et Cosmochimica Acta, 65, 435–441.

    Article  Google Scholar 

  • Bertram, C. J., Elderfield, H., Aldridge, R. J., & Morris, S. C. (1992). 87Sr/86Sr, 143Nd/144Nd and REEs in Silurian phosphatic fossils. Earth and Planetary Science Letters, 113, 239–249.

    Article  Google Scholar 

  • Beyers, J. M., & Orchard, M. J. (1991). Upper Permian and Triassic conodont faunas from the type area of the Cache Creek Complex, south-central British Columbia, Canada. Geological Survey of Canada Bulletin, 417, 269–297.

    Google Scholar 

  • Brand, U., Morrison, J. O., & Campbell, I. T. (1999). Diagenesis. In C. P. Marshall & R. W. Fairbridge (Eds.), Geochemistry, Encyclopedia of Earth Science (pp. 126–130). Dordrecht: Springer.

    Google Scholar 

  • Bright, C. A., Cruse, A. M., Lyons, T. W., MacLeod, K. G., Glascock, M. D., & Ethington, R. L. (2009). Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts? Geochimica et Cosmochimica Acta, 73, 1609–1624.

    Article  Google Scholar 

  • Burrett, C. F. (1992). Conodont geothermometry in Palaeozoic carbonate rocks of Tasmania and its economic implications. Australian Journal of Earth Science, 39, 61–66.

    Article  Google Scholar 

  • Chen, J. B., Zhao, L. S., Chen, Z. Q., Tong, J. N., Zhou, L., Hu, Z. C., & Chen, Y. L. (2012). Rare earth elements in situ in conodont from Meishan section and implications for paleoenvironmental evolution. Earth Science Journal of China University of Geoscience (Wuhan), 37 , 25–34. [in Chinese with English abstract]

  • Chen, J., Algeo, T. J., Zhao, L., Chen, Z. Q., Cao, L., Zhang, L., & Li, Y. (2015). Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Earth-Science Reviews, 149, 181–202.

    Article  Google Scholar 

  • Decrée, S., Herwartz, D., Mercadier, J., Miján, I., de Buffrénil, V., Leduc, T., & Lambert, O. (2018). The post-mortem history of a bone revealed by its trace element signature: The case of a fossil whale rostrum. Chemical Geology, 477, 137–150.

    Article  Google Scholar 

  • Desrochers, A., & Orchard, M. J. (1991). Stratigraphic revisions and carbonate sedimentology of the Kunga Group (Upper Triassic-Lower Jurassic), Queen Charlotte Islands, British Columbia. Geological Survey of Canada Paper, 90-10, 163–172.

    Google Scholar 

  • Dopieralska, J., Belka, Z., & Walczak, A. (2016). Nd isotope composition of conodonts: An accurate proxy for sea-level fluctuations. Gondwana Research, 34, 284–295.

    Article  Google Scholar 

  • Ellison, S. P. (1944). The composition of conodonts. Journal of Paleontology, 18, 133–140.

    Google Scholar 

  • Epstein, A. G., Epstein, J. B., & Harris, L. D. (1977). Conodont color alteration – And index to organic metamorphism. US Geological Survey Professional Paper, 995, 1–27.

    Google Scholar 

  • Felitsyn, S., Sturesson, U., Popov, L., & Holmer, L. (1998). Nd isotope composition and rare earth element distribution in early Paleozoic biogenic apatite from Baltoscandia: A signature of Iapetus ocean water. Geology, 26, 1083–1086.

    Article  Google Scholar 

  • Ferretti, A., Malferrari, D., Medici, L., & Savioli, M. (2017). Diagenesis does not invent anything new: Precise replication of conodont structures by secondary apatite. Nature Scientific Reports, 7, Article 1624, p. 9.

  • Galloway, B. J., Dewing, K., & Beauchamp, B. (2018). Upper Paleozoic hydrocarbon systems in the Sverdrup Basin, Canadian Arctic Islands. Marine and Petroleum Geology, 92, 809–821.

    Article  Google Scholar 

  • Gawlick, H. J., Krystyn, L., & Lein, R. (1994). Conodont colour alteration indices: Paleotemperatures and metamorphism in the Northern Calcareous Alps—A general view. Geologische Rundschau, 83, 660–664.

    Article  Google Scholar 

  • Girard, C., & Albarède, F. (1996). Trace elements in conodont phosphates from the Frasnian/Famennian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 195–209.

    Article  Google Scholar 

  • Girard, C., & Lécuyer, C. (2002). Variations in Ce anomalies of conodonts through the Frasnian/Famennian boundary of Poland (Kowala – Holy Cross Mountains): Implications for the redox state of seawater and biodiversity. Palaeogeography, Palaeoclimatology, Palaeoecology, 181, 299–311.

    Article  Google Scholar 

  • Goebel, E. D. (1996). Migration paths for MVT hydrothermal fluids within the Tri-State mining district from stratigraphic plotting of conodont alteration indices. Society of Economic Geologists Special Publication, 4, 413–418.

    Google Scholar 

  • Golding, M. L., Orchard, M. J., & Zagorevski, A. (2016). Microfossils from the Cache Creek Complex in northern British Columbia and southern Yukon. Geological Survey of Canada Open File, 8033 25 p.

  • Grandjean, P., & Albarède, F. (1989). Ion probe measurement of rare earth elements in biogenic phosphates. Geochimica et Cosmochimica Acta, 53, 3179–3183.

  • Grandjean, P., Cappetta, H., Michard, A., & Albarède, F. (1987). The assessment of REE patterns and 143Nd/144Nd ratios in fish remains. Earth and Planetary Science Letters, 84, 181–196.

    Article  Google Scholar 

  • Grandjean-Lécuyer, P., Feist, R., & Albarède, F. (1993). Rare earth elements in old biogenic apatites. Geochimica et Cosmochimica Acta, 57, 2507–2514.

    Article  Google Scholar 

  • Harris, A.G., Harris, L.D. & Epstein, J.B. (1978). Oil and gas data from Paleozoic rocks in the Appalachian Basin: maps for assessing hydrocarbon potential and thermal maturity. United States Geological Survey Miscellaneous Investigations Series, Map I-917-E .

  • Harris, A. G., Lane, H. R., Tailleur, I. L., & Ellersieck, I. (1987). Conodont thermal maturation patterns in Paleozoic and Triassic rocks, northern Alaska – Geologic and exploration implications. In I. L. Tailleur & P. Weimar (Eds.), Alaskan North Slope Geology 1, Society of Economic Paleontologists and Mineralogists (pp. 181–191). Bakersfield: Pacific Section.

    Google Scholar 

  • Harris, A. G., Rexroad, C. B., Lierman, R. T., & Askin, R. A. (1990). Evaluation of a CAI anomaly, Putnam County, central Indiana, USA: Possibility of a Mississippi Valley-type hydrothermal system. Courier Forschunsinstitut Senckenberg, 118, 253–266.

    Google Scholar 

  • Hartkopf-Fröder, C., Königshof, P., Littke, R., & Schwarzbauer, J. (2015). Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: A review. International Journal of Coal Geology, 150-151, 74–119.

    Article  Google Scholar 

  • Hedges, R. E. M. (2002). Bone diagenesis: An overview of processes. Archaeometry, 44, 319–328.

    Article  Google Scholar 

  • Henderson, P., Marlow, C. A., Molleson, T. I., & Williams, C. T. (1983). Patterns of chemical change during bone fossilization. Nature, 306, 358–360.

    Article  Google Scholar 

  • Herwartz, D., Tütken, T., Münker, C., Jochum, K. P., Stoll, B., & Sander, P. M. (2011). Timescales and mechanisms of REE and Hf uptake in fossil bones. Geochimica et Cosmochimica Acta, 75, 82–105.

    Article  Google Scholar 

  • Herwartz, D., Tütken, T., Jochum, K. P., & Sander, P. M. (2013). Rare earth element systematics of fossil bone revealed by LA-ICPMS analysis. Geochimica et Cosmochimica Acta, 103, 161–183.

    Article  Google Scholar 

  • Hillier, S., & Marshall, J. E. A. (1992). Organic maturation, thermal history and hydrocarbon generation in the Orcadian Basin, Scotland. Journal of the Geological Society, 149, 491–502.

    Article  Google Scholar 

  • Hodson, M. E., Valsami-Jones, E., Cotter-Howells, J. D., Dubbin, W. E., Kemp, A. J., Thornton, I., & Warren, A. (2001). Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soils—A leaching column study. Environmental Pollution, 112, 233–243.

    Article  Google Scholar 

  • Holser, W. T. (1997). Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 131, 309–323.

    Article  Google Scholar 

  • Hubert, J. F., Panish, P. T., Chure, D. J., & Prostak, K. S. (1996). Chemistry, microstructure, petrology, and diagenetic model of Jurassic dinosaur bones, Dinosaur National Monument, Utah. Journal of Sedimentary Research, 66, 531–547.

    Google Scholar 

  • Iliopolous, G., Galanidou, S., Pergantis, S. A., Vamvakaki, V., & Chaniuotakis, N. (2010). Identifying the geochemical taphonomy of the osteological material from Katsambas rockshelter. Journal of Archaeological Science, 37, 116–123.

    Article  Google Scholar 

  • Jaouen, K., Balter, V., Herrscher, E., Lamboux, A., Telouk, P., & Albarède, F. (2012). Fe and Cu stable isotopes in archeological human bones and their relationship to sex. American Journal of Physical Anthropology, 148, 334–340.

    Article  Google Scholar 

  • Joachimski, M. M., & Buggisch, W. (2002). Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology, 30, 711–714.

    Article  Google Scholar 

  • Joachimski, M. M., van Geldern, R., Breisig, S., Buggisch, W., & Day, J. (2004). Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. International Journal of Earth Science, 93, 542–553.

    Article  Google Scholar 

  • Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., Morrow, J. R., Day, J., & Weddige, K. (2009). Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284, 599–609.

    Article  Google Scholar 

  • Joachimski, M. M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J., & Sun, Y. (2012). Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 40, 195–198.

    Article  Google Scholar 

  • Keenan, S. W. (2016). From bone to fossil: A review of the diagenesis of bioapatite. American Mineralogist, 101, 1943–1951.

    Article  Google Scholar 

  • Keenan, S. W., & Engel, A. S. (2017). Early diagenesis and recrystallization of bone. Geochimica et Cosmochimica Acta, 196, 209–223.

    Article  Google Scholar 

  • Kim, T., Lee, Y., & Lee, Y. N. (2018). Fluorapatite diagenetic differences between Cretaceous skeletal fossils of Mongolia and Korea. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 579–589.

    Article  Google Scholar 

  • Koeppenkastrop, D., & DeCarlo, E. H. (1992). Sorption of rare-earth elements from seawater onto synthetic mineral particles—An experimental approach. Chemical Geology, 95, 251–263.

    Article  Google Scholar 

  • Königshof, P. (1991). Conodont colour alteration adjacent to a granitic intrusion, Harz Mountains. Neues Jahrbuch fur Geologie und Paläontologie, 1991, 84–90.

    Article  Google Scholar 

  • Königshof, P. (2003). Conodont deformation patterns and textural alteration in Paleozoic conodonts: Examples from Germany and France. Senckenbergiana lethaea, 83, 149–156.

  • Königshof, P., & Werner, R. (1994). Zur Bestimmung der Versenkungstemperaturen im Devon der Eifeler Kalkmulden-Zone mit Hilfe der Conodontenfarbe. Courier Forschungsinstitut Senckenberg, 168, 255–265.

    Google Scholar 

  • Lécuyer, C., Grandjean, P., Barrat, J.-A., Nolvak, J., Emig, C., Paris, F., & Robardet, M. (1998). δ18O and REE contents of phosphatic brachiopods: A comparison between modern and lower Paleozoic populations. Geochimica et Cosmochimica Acta, 62, 2429–2436.

    Article  Google Scholar 

  • Lécuyer, C., Reynard, B., & Grandjean, P. (2004). Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites. Chemical Geology, 204, 63–102.

    Article  Google Scholar 

  • Li, Y., Zhao, L., Chen, Z. Q., Algeo, T. J., Cao, L., & Wang, X. (2017). Oceanic environmental changes on a shallow carbonate platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic transition: Evidence from rare earth elements in conodont bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 486, 6–16.

    Article  Google Scholar 

  • Lindström, M. (1964). Conodonts. Amsterdam: Elsevier Publishing 196 p.

    Google Scholar 

  • Lowey, G. W., Long, D. G. F., Fowler, M. G., Sweet, A. R., & Orchard, M. J. (2009). Petroleum source rock potential of Whitehorse trough: A frontier basin in south-Central Yukon. Bulletin of Canadian Petroleum Geology, 57, 350–386.

    Article  Google Scholar 

  • Lünsdorf, N. K., & Lünsdorf, J. O. (2016). Evaluating Raman spectra of carbonaceous matter by automated, iterative curve-fitting. International Journal of Coal Geology, 160-161, 51–62.

    Article  Google Scholar 

  • Lünsdorf, N. K., Dunkl, I., Schmidt, B. C., Rantitsch, G., & von Eynatten, H. (2017). Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part 2: A revised geothermometer. Geostandards and Geoanalytical Research, 41, 593–612.

    Article  Google Scholar 

  • Luz, B., Kolodny, Y., & Horowitz, M. (1984). Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta, 48, 1689–1693.

    Article  Google Scholar 

  • Lyengar, G. V., Kollmer, W. E., & Bowen, H. J. (1978). The elemental composition of human tissues and body fluids: A compilation of values for adults. Verlag Chemie: Weinheim.

    Google Scholar 

  • MacFadden, B. J., Purdy, B. A., Church, K., & Stafford Jr., T. W. (2012). Humans were contemporaneous with late Pleistocene mammals in Florida: Evidence from rare earth element analysis. Journal of Vertebrate Paleontology, 32, 708–716.

    Article  Google Scholar 

  • Marshall, C. P., Mar, G. L., Nicoll, R. S., & Wilson, M. A. (2001). Organic geochemistry of artificially matured conodonts. Organic Geochemistry, 32, 1055–1071.

    Article  Google Scholar 

  • Martinez-Garcia, M. J., Moreno, J. M., Moreno-Clavel, J., Vergara, N., Garcıa-Sanchez, A., Guillamon, A., Portı, M., & Moreno-Grau, S. (2005). Heavy metals in human bones in different historical epochs. Science of the Total Environment, 348, 51–72.

    Article  Google Scholar 

  • Maslov, A., Artyushkova, O. V., Tagarieva, R. C., Kiseleva, D. V., Streletskaya, M. V., Chervyakovskaya, M. V., & Cherednichenko, N. V. (2019). REE, Y, Th, U and Mn systematics of Upper Devonian conodonts in the West Uralian Folded Zone (Southern Urals). Litosfera, 19, 250–268 [In Russian].

    Google Scholar 

  • McMillan, R., & Golding, M. L. (2019). Thermal maturity of carbonaceous material in conodonts and the Color Alteration Index: Independently identifying maximum temperature with Raman spectroscopy. Palaeogeography, Palaeoclimatology, Palaeoecology, 534, 109290.

    Article  Google Scholar 

  • McMillan, R., Weis, D., Amini, M., & Bonjean, D. (2017). Identifying the reworking and stratigraphic provenance of bones by exploring multivariate geochemical relationships with the ‘Perio-spot’ technique. Journal of Archaeological Science, 88, 1–13.

    Article  Google Scholar 

  • McMillan, R., Snoeck, C., de Winter, N., Claeys, P., & Weis, D. (2019). Evaluating the impact of acetic acid chemical pre-treatment on ‘old’ and cremated bone with the ‘Perio-spot’ technique and ‘Perios-endos’ profiles. Palaeogeography, Palaeoclimatology, Palaeoecology, 530, 330–344.

  • Müller, K. J., & Nogami, Y. (1971). Über den Feinbau der Conodonten. Memoirs of the Faculty of Science, Kyoto University Series of Geology and Mineralogy, 38, 1–88.

    Google Scholar 

  • Nicoll, R. S. (1981). Conodont colour alteration adjacent to a volcanic plug, Canning Basin, Western Australia. BMR Journal of Australian Geology and Geophysics, 6, 265–267.

    Google Scholar 

  • Nielsen-Marsh, C. M., & Hedges, R. E. M. (2000). Patterns of diagenesis in bone I: The effects of site environments. Journal of Archaeological Science, 27, 1139–1150.

    Article  Google Scholar 

  • Nöth, S. (1998). Conodont color (CAI) versus microcrystalline and textural changes in Upper Triassic conodonts from Northwest Germany. Facies, 38, 165–173.

    Article  Google Scholar 

  • Nöth, S., Bruckschen, P., & Richter, D. K. (1991). Conodont color alteration and microdolomite composition — Implications to the Muschelkalk limestones (Upper Triassic) overlying the Upper Cretaceous intrusive body of the Vlotho Massif (Weserbergland, Northwest Germany). Geologie Mijnbouw, 70, 265–273.

    Google Scholar 

  • Nowlan, G., & Barnes, C. R. (1987). Application of conodont colour alteration indices to regional and economic geology. In R. L. Austin (Ed.), Conodonts: Investigative techniques and applications (pp. 209–229). Chichester: Ellis Horwood.

    Google Scholar 

  • Orchard, M. J. (1991). Late Triassic conodont biochronology and biostratigraphy of the Kunga Group, Queen Charlotte Islands, British Columbia. Geological Survey of Canada Paper, 90-10, 173–193.

    Google Scholar 

  • Orchard, M. J., & Forster, P. J. L. (1991). Conodont colour and thermal maturity of the Late Triassic Kunga Group, Queen Charlotte Islands, British Columbia. Geological Survey of Canada Paper, 90-10, 453–464.

    Google Scholar 

  • Orchard, M. J., Cordey, F., Rui, L., Bamber, E. W., Mamet, B., Struik, L. C., Sano, H., & Taylor, H. J. (2001). Biostratigraphic and biogeographic constraints on the Carboniferous to Jurassic Cache Creek Terrane in central British Columbia. Canadian Journal of Earth Sciences, 38, 551–578.

    Article  Google Scholar 

  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518.

    Article  Google Scholar 

  • Pavlish, L. A., & Alcock, P. W. (1984). The case of the itinerant bone: The role of sedimentological and geochemical evidence. Journal of Field Archaeology, 11, 323–330.

    Google Scholar 

  • Pell, J., Russell, J. K., & Zhang, S. X. (2015). Kimberlite emplacement temperatures from conodont geothermometry. Earth and Planetary Science Letters, 411, 131–141.

    Article  Google Scholar 

  • Pfretzschner, H.-U. (2001). Iron oxides in fossil bone. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 220, 417–429.

    Article  Google Scholar 

  • Picard, S., Lécuyer, C., Barrat, J.-A., Garcia, J.-P., Dromart, G., & Sheppard, S. M. F. (2002). Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo-Paris Basin, France and England). Chemical Geology, 186, 1–16.

    Article  Google Scholar 

  • Pietzner, H., Vahl, J., Werner, H., & Ziegler, W. (1968). Zur chemischen Zusammensetzung und Mikromorphologie der Conodonten. Palaeontographica A, 128, 115–152.

    Google Scholar 

  • Pucéat, E., Reynard, B., & Lécuyer, C. (2004). Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chemical Geology, 205, 83–97.

    Article  Google Scholar 

  • Quinton, P. C., & MacLeod, K. G. (2014). Oxygen isotopes from conodont apatite of the midcontinent, US: Implications for Late Ordovician climate evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 404, 57–66.

  • Quinton, P. C., Law, S., MacLeod, K. G., Herrmann, A. D., Haynes, J. T., & Leslie, S. A. (2018). Testing the early Late Ordovician cool-water hypothesis with oxygen isotopes from conodont apatite. Geological Magazine, 155, 1727–1741.

    Article  Google Scholar 

  • Rasmussen, J. A., & Smith, M. P. (2001). Conodont geothermometry and tectonic overburden in the northernmost East Greenland Caledonides. Geological Magazine, 138, 687–698.

    Article  Google Scholar 

  • Rejebian, V. A., Harris, A. G., & Huebner, J. S. (1987). Conodont color and textural alteration: An index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Geological Society of America Bulletin, 99, 471–479.

    Article  Google Scholar 

  • Repetski, J. E., Ryder, R. T., Harper, J. A., & Trippi, M. H. (2006). Thermal maturity patterns in the Ordovician and Devonian of Pennsylvania using conodont color alteration index (CAI) and vitrinite reflectance (%Ro). Northeastern Geology and Environmental Sciences, 28, 266–294.

  • Reynard, B., Lécuyer, C., & Grandjean, P. (1999). Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology, 155, 233–241.

    Article  Google Scholar 

  • Sangster, D. F., Nowlan, G. S., & McCracken, A. D. (1994). Thermal comparison of Mississippi Valley-type lead-zinc deposits and their host rocks using fluid inclusion and conodont color alteration index data. Economic Geology, 89, 493–514.

    Article  Google Scholar 

  • Sanz-López, J., & Blanco-Ferrera, S. (2012). Overgrowths of large authigenic apatite crystals on the surface of conodonts from Cantabrian limestones (Spain). Facies, 58, 707–726.

    Article  Google Scholar 

  • Shaw, H. F., & Wasserburg, G. J. (1985). Sm-Nd in marine carbonates and phosphates: Implications for Nd isotopes in seawater and crustal ages. Geochimica et Cosmochimica Acta, 492, 503–518.

    Article  Google Scholar 

  • Song, H., Wignall, P. B., Tong, J., Bond, D. P. G., Song, H., Lai, X., Zhang, K., Wang, H., & Chen, Y. (2012). Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters, 353-354, 12–21.

    Article  Google Scholar 

  • Suárez-Ruiz, I., Flores, D., Mendonça Filho, J. G., & Hackley, P. C. (2012). Review and update of the applications of organic petrology: Part 1, geological applications. International Journal of Coal Geology, 99, 54–112.

    Article  Google Scholar 

  • Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., & Lai, X. (2012). Lethally hot temperatures during the Early Triassic greenhouse. Science, 338, 366–370.

    Article  Google Scholar 

  • Swift, A. (1993). Mantle-derived heat recorded by conodont colour alteration in the Carboniferous of the Isle of Man. Geological Journal, 28, 171–177.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell Scientific 312 p.

    Google Scholar 

  • Thomas, D. B., McGoverin, C. M., Fordyce, R. E., Frew, R. D., & Gordon, K. C. (2011). Raman spectroscopy of fossil bioapatite—A proxy for diagenetic alteration of the oxygen isotope composition. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 62–70.

    Article  Google Scholar 

  • Trotter, J. A., Barnes, C. R., & McCracken, A. D. (2016). Rare earth elements in conodont apatite: Seawater or pore-water signatures? Palaeogeography, Palaeoclimatology, Palaeoecology, 462, 92–100.

    Article  Google Scholar 

  • Trueman, C. N. (1999). Rare earth element geochemistry and taphonomy of terrestrial vertebrate assemblages. Palaios, 14, 555–568.

    Article  Google Scholar 

  • Trueman, C. N., & Tuross, N. (2002). Trace elements in recent and fossil bone apatite. In M. J. Kohn, J. Rakovan, & J. M. Hughes (Eds.), Phosphates: Geochemical, Geobiological, and Materials Importance, Re. Mineral. Geochem. (Vol. 48, pp. 489–521).

    Google Scholar 

  • Trueman, C. N., Field, J. H., Dortch, J., Charles, B., & Wroe, S. (2005). Prolonged coexistence of humans and megafauna in Pleistocene Australia. Proceedings of the National Academy of Science, 102, 8381–8385.

    Article  Google Scholar 

  • Trueman, C. N., Behrensmeyer, A. K., Potts, R., & Tuross, N. (2006). High-resolution records of location and stratigraphic provenance from the rare earth element composition of fossil bones. Geochimica et Cosmochimica Acta, 70, 4343–4355.

    Article  Google Scholar 

  • Trueman, C. N., Kocsis, L., Palmer, M. R., & Dewdney, C. (2011). Fractionation of rare earth elements within bone mineral: A natural cation exchange system. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 124–132.

    Article  Google Scholar 

  • Van Koeverden, J. H., Nakrem, H. A., & Karlsen, D. A. (2010). Migrated oil on Novaya Zemlya, Russian artic: Evidence for a novel petroleum system in the eastern Barents Sea and the Kara Sea. AAPG Bulletin, 94, 791–817.

    Article  Google Scholar 

  • Wardlaw, B. R., & Harris, A. G. (1984). Conodont-based thermal maturation of Paleozoic rocks in Arizona. AAPG Bulletin, 68, 1101–1106.

    Google Scholar 

  • Weary, D. J., Ryder, R. T., & Nyahay, R. E. (2001). Thermal maturity patterns in New York State using CAI and % Ro. Northeastern Geology and Environmental Sciences, 23, 356–376.

    Google Scholar 

  • Wenzel, B., Lécuyer, C., & Joachmiski, M. M. (2000). Comparing oxygen isotope records of Silurian calcite and phosphate – δ18O compositions of brachiopods and conodonts. Geochimica et Cosmochimica Acta, 64, 1859–1872.

    Article  Google Scholar 

  • Wheeley, J. R., Jardine, P. E., Raine, R. J., Boomer, I., & Smith, M. P. (2018). Paleoecologic and paleoceanographic interpretation of δ18O variability in Lower Ordovician conodont species. Geology, 46, 467–470.

    Article  Google Scholar 

  • Wiederer, U., Königshof, P., Feist, R., Franke, W., & Doublier, M. P. (2002). Low-grade metamorphism in the Montagne Noire (S-France): Conodont Alteration Index (CAI) in Palaeozoic carbonates and implications for the exhumation of a hot metamorphic core complex. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 393–407.

    Google Scholar 

  • Wright, J. (1990). Conodont apatite: Structure and geochemistry. In J. G. Carter (Ed.), Skeletal biomineralization: Patterns, processes and evolutionary trends, Volume 1 (pp. 445–459). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Wright, J., Seymour, R. S., & Shaw, H. F. (1984). REE and Nd isotopes in conodont apatite: Variations with geological age and depositional environment. Geological Society of America Special Paper, 196, 325–340.

    Article  Google Scholar 

  • Wright, J., Schrader, H., & Holser, W. T. (1987). Paleoredox variationsin ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta, 51, 631–644.

    Article  Google Scholar 

  • Zhang, S., & Barnes, C. R. (2007). Late Ordovician–Early Silurian conodont biostratigraphy and thermal maturity, Hudson Bay Basin. Bulletin of Canadian Petroleum Geology, 55, 179–216.

    Article  Google Scholar 

  • Zhang, L., Algeo, T. J., Cao, L., Zhao, L., Chen, Z. Q., & Li, Z. (2016). Diagenetic uptake of rare earth elements by conodont apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 458, 176–197.

    Article  Google Scholar 

  • Zhang, L., Cao, L., Zhao, L., Algeo, T. J., Chen, Z.-Q., Li, Z., Lv, Z., & Wang, X. (2017). Raman spectral, elemental, crystallinity, and oxygen-isotope variations in conodont apatite during diagenesis. Geochimica et Cosmochimica Acta, 210, 184–207.

    Article  Google Scholar 

  • Zhao, L., Chen, Z. Q., Algeo, T. J., Chen, J., Chen, Y., Tong, J., Gao, S., Zhou, L., Hu, Z., & Liu, Y. (2013). Rare-earth element patterns in conodont albid crowns: Evidence for massive inputs of volcanic ash during the latest Permian biocrisis? Global and Planetary Change, 105, 135–151.

    Article  Google Scholar 

  • Zieliński, M. (2012). Conodont thermal alteration patterns in Devonian and Carboniferous rocks of the Ahnet and Mouydir basins (southern Algeria). Marine and Petroleum Geology, 38, 166–176.

    Article  Google Scholar 

  • Žigaitė, Ž., Qvarnström, M., Bancroft, A., Pérez-Huerta, A., Blom, H., & Ahlberg, P. E. (2019). Trace and rare earth element compositions of Silurian conodonts from the Vesiku Bone Bed: Histological and palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 109449.

  • Zougrou, I. M., Katsikini, M., Pinakidou, P., E.C, Papadopoulou, F., & Tsoukala, L. E. (2014a). Study of fossil bones by synchrotron radiation micro-spectroscopic techniques and scanning electron microscopy. Journal of Synchrotron Radiation, 21, 149–160.

    Article  Google Scholar 

  • Zougrou, I. M., Katsikini, M., Pinakidou, F., Papadopoulou, L., Tsoukala, E., & Paloura, E. C. (2014b). Influence of depositional environment in fossil teeth: A micro-XRF and XAFS study. Journal of Physics, Conference Series, 499, 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to reviewer Daniel Herwartz, an anonymous reviewer, and Editor Peter Königshof for helping to greatly improve this manuscript. RM is grateful for the NSERC CGSD Program, the UBC 4YF Program, and the NSERC CREATE Multidisciplinary Applied Geochemistry Network (MAGNET) financial support. RM is also supported in part by funding from the Social Sciences and Humanities Research Council of Canada. RM thanks Marghaleray Amini (PCIGR, UBC) for valuable help analysing the specimens with LA-ICP-MS. MG thanks Mike Orchard and Hillary Taylor for providing conodont material for this study, and the GEM 2 Program of the Geological Survey of Canada for providing additional funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Golding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golding, M.L., McMillan, R. The impacts of diagenesis on the geochemical characteristics and Color Alteration Index of conodonts. Palaeobio Palaeoenv 101, 803–821 (2021). https://doi.org/10.1007/s12549-020-00447-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-020-00447-y

Keywords

Navigation