Skip to main content
Log in

First Eocene record of a bangialean rhodophyte (the endolithic microboring Conchocelichnus seilacheri) and coralline red algae from the Pacific Coast of North America

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

Microborings made by bangialean rhodophytes and classified as Conchocelichnus occur as filamentous traces within living stylasterid corals or mollusc shells. These microborings have a fossil record spanning Ordovician to Recent within organic calcareous substrates such as mollusc and brachiopod shells, crinoid columnals, corals, and even sponges. The ichnotaxon Conchocelichnus seilacheri, based on microborings within Oligocene bivalves from Germany and Recent shells from the Bahamas has now been discovered in the tube walls of the spirorbid polychaete Neodexiospira vanslykei from the late Eocene basal part of the Lincoln Creek Formation in western Washington State, USA. Our research thus represents the first known interaction of endolithic traces Conchocelichnus seilacheri within fossil polychaete tubes and the first Eocene record of these microborings from North America. Neodexiospira vanslykei was also associated with the calcareous rhodophyte Corallina sp., representing the first Cenozoic record of Corallina from the Pacific Coast of North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All studied and presented material in this paper have Inventory number of NM Prague and Universioty of Gottingen. All material have clear inventory number and free and clear access for next following study. We have mentioned all studied data with Inventory number writen in brackets in each caption under figures.

References

  • Adey, W.H. 1986. Coralline algae as indicators of sea-level. In Sea-level research, ed. O. van de Plassche, 229–280. Dordrecht: Springer. https://doi.org/10.1007/978-94-009-4215-8_9.

    Chapter  Google Scholar 

  • Aguirre, J., R. Riding, and J.C. Braga. 2000. Diversity of coralline red algae: Origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26 (4): 651–667. https://doi.org/10.1666/0094-8373(2000)026%3c0651:DOCRAO%3e2.0.CO;2.

    Article  Google Scholar 

  • Aguirre, J., J.I. Bacetaand, and J.C. Braga. 2007. Recovery of primary producers after the Cretaceous-Tertiary mass extinction: Paleocene calcareous red algae from the Iberian Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 249: 393–411. https://doi.org/10.1016/j.palaeo.2007.02.009.

    Article  Google Scholar 

  • Aguirre, J., F. Perfectti, and J.C. Braga. 2010. Integrating phylogeny, molecular clocks and the fossil record in the evolution of coralline algae (Corallinales, Rhodophyta). Paleobiology 36: 519–533. https://doi.org/10.1666/09041.1.

    Article  Google Scholar 

  • Armentrout, J.M. 1973. Molluscan paleontology and biostratigraphy of the Lincoln Creek Formation (late Eocene-Oligocene), southwestern Washington [dissertation]. Seattle: University of Washington.

    Google Scholar 

  • Armentrout, J.M., K. McDougall, P.T. Jefferis, and E. Nesbitt. 1980. Geologic field trip guide for the Cenozoic stratigraphy and late Eocene paleoecology of southwestern Washington. In Geologic field trips in Western Oregon and Southwestern Washington, ed. K.F. Oles, J.G. Johnson, A.R. Niem, and W.A. Niem, 79–119. State of Oregon, Department of Geology and Mineral Industries Bulletin 101.

  • Balog, S.-J. 1996. Boring thallophytes in some Permian and Triassic reefs: bathymetry and bioerosion. In Global and regional controls on biogenic sedimentation. I. Reef Evolution Research Reports, ed. J. Reitner, F. Neuweiler, and F. Gunkel, 305–309. Göttinger Arbeiten zur Geologie und Paläontologie 2.

  • Basso, D., and B. Granier. 2018. Johnson & Kaska 1965 Fossil Coralline Algae from Guatemala (Revision of the Jesse Harlan Johnson collection, Part 4). Rivista Italiana Di Paleontologia e Stratigrafia 124 (1): 91–104. https://doi.org/10.13130/2039-4942/9630.

    Article  Google Scholar 

  • Beikman, H.M., W.W. Rau, and H.C. Wagner. 1967. The Lincoln Creek Formation, Grays Harbor basin, southwestern Washington. US Geological Survey Bulletin 1244–I: 1–14.

    Google Scholar 

  • Blouin, N.A., J.A. Brodie, A.C. Grossman, P. Xu, and S.H. Brawley. 2011. Porphyra: A marine crop shaped by stress. Trends in Plant Science 16 (1): 29–37. https://doi.org/10.1016/j.tplants.2010.10.004.

    Article  CAS  Google Scholar 

  • Borromeo, L., U. Zimmermann, S. Andó, G. Coletti, D. Bersani, D. Basso, P. Gentile, B. Schulz, and E. Garzanti. 2017. Raman spectroscopy as a tool for magnesium estimation in Mg-calcite. Journal of Raman Spectroscopy 48 (7): 983–992. https://doi.org/10.1002/jrs.5156.

    Article  CAS  Google Scholar 

  • Braga, J.C. 2011. Fossil Coralline Algae. In Encyclopedia of modern coral reefs. Encyclopedia of earth sciences series, ed. D. Hopley, 423–427. Dordrecht: Springer. https://doi.org/10.1007/978-90-481-2639-2_81.

    Chapter  Google Scholar 

  • Bundschuh, M. 2000. Silurische Mikrobohrspuren. Ihre Beschreibung und Verteilung in verschiedenen Faziesräumen (Schweden, Litauen, Großbritannien und USA) [dissertation]. FB Geologie, Frankfurt a.M: Johann Wolfgang Goethe Universität.

  • Bundschuh, M., I. Glaub, K. Hofmann, G. Radtke, and K. Vogel. 1989. Bohrorganismen helfen, fossile Meeresbecken zu rekonstruieren. Forschung Frankfurt 3: 56–64.

    Google Scholar 

  • Butterfield, N. 2000. Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the mesoproterozoic/neoproterozoic radiation of eukaryotes. Paleobiology 26 (3): 386–404. https://doi.org/10.1666/0094-8373(2000)026%3c0386:BPNGNS%3e2.0.CO;2.

    Article  Google Scholar 

  • Butterfield, N.J., A.H. Knoll, and K. Swett. 1990. A bangiophyte red alga from the Proterozoic of arctic Canada. Science 250: 104–107. https://doi.org/10.1126/science.11538072.

    Article  CAS  Google Scholar 

  • Buzgar, N., and A.I. Apopei. 2009. The Raman study of certain carbonates. Analele Științifice ale Universităţii ”Alexandru Ioan Cuza” din Iași. Geologie 55 (2): 97–112.

    Google Scholar 

  • Calderon, M.S., D.E. Bustamante, P.W. Gabrielson, P.T. Martone, K.R. Hind, S.R. Schipper, and A. Mansilla. 2021. Type specimen sequencing, multilocus analyses, and species delimitation methods recognize the cosmopolitan Corallina berteroi and establish the northern Japanese C. yendoi sp. nov. (Corallinaceae, Rhodophyta). Journal of Phycology 57: 1659–1672. https://doi.org/10.1111/jpy.13202.

    Article  CAS  Google Scholar 

  • Campbell, S.E. 1980. Palaeoconchocelis starmachii, a carbonate boring microfossil from the Upper Silurian of Poland (425 million years old): Implications for the evolution of the Bangiaceae (Rhodophyta). Phycologia 19 (1): 25–36. https://doi.org/10.2216/i0031-8884-19-1-25.1.

    Article  Google Scholar 

  • Campbell, S.E., and K. Cole. 1984. Developmental studies on cultured endolithic conchocelis (Rhodophyta). Hydrobiologia 116: 201–208. https://doi.org/10.1007/BF00027666.

    Article  Google Scholar 

  • Campbell, S., J. Kaźmierczak, and S. Golubić. 1979. Palaeoconchocelis starmachii gen. n., sp. n., an endolithic rhodophyte (Bangiaceae) from the Silurian of Poland. Acta Palaeontologica Polonica 24 (3): 405–409.

    Google Scholar 

  • Clokie, J.J.P., and A.D. Boney. 1980. Cochocelis distribution on the firth of clyde: Estimates of the lower limits of the photic zone. Journal of Experimental Marine Biology and Ecology 46 (1): 111–125. https://doi.org/10.1016/0022-0981(80)90096-9.

    Article  Google Scholar 

  • Clokie, J.J.P., T.P. Scoffin, and A.D. Boney. 1981. Depth Maxima of Conchocelis and Phymatolithon rugulosum on the N. W. Shelf and Rockall Plateau. Marine Ecology Progress Series 4: 131–133.

    Article  Google Scholar 

  • Coletti, G., and D. Basso. 2020. Coralline algae as depth indicators in the Miocene carbonates of the Eratosthenes Seamount (ODP Leg 160, Hole 966F). Geobios 60: 29–46. https://doi.org/10.1016/j.geobios.2020.03.005.

    Article  Google Scholar 

  • Coletti, G., D. Basso, and C. Corselli. 2018. Coralline algae as depth indicators in the Sommières Basin (early Miocene, Southern France). Geobios 51 (1): 15–30. https://doi.org/10.1016/j.geobios.2017.12.002.

    Article  Google Scholar 

  • Dell’Angelo, B., A. Bonfitto, and M. Taviani. 2011. Chitons (Polyplacophora) from Paleogene strata in western Washington State, U.S.A. Journal of Paleontology. 85: 936–954. https://doi.org/10.2307/23020144.

    Article  Google Scholar 

  • Dievart, A.M., C.D. McQuaid, G.I. Zardi, K.R. Nicastro, and P.W. Froneman. 2022. Photoautotrophic euendoliths and their complex ecological effects in marine bioengineered ecosystems. Diversity 14 (9): 737. https://doi.org/10.3390/d14090737.

    Article  CAS  Google Scholar 

  • Gee, J.M., and E.W. Knight-Jones. 1962. The morphology and larval behaviour of a new species of Spirorbis (Serpulidae). Journal of the Marine Biological Association of the UK 42: 641–654. https://doi.org/10.1017/S0025315400054321.

    Article  Google Scholar 

  • Gektidis, M., Z. Dubinsky, and S. Goffredo. 2007. Microendoliths of the Shallow Euphotic Zone in open and shaded habitats at 30°N—Eilat, Israel—paleoecological implications. Facies 53: 43–55. https://doi.org/10.1007/s10347-006-0091-z.

    Article  Google Scholar 

  • Glaub, I. 1994. Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). Courier Forschungsinstitut Senckenberg 174: 1–324.

    Google Scholar 

  • Glaub, I. 1999. Paleobathymetric reconstructions of fossil microborings. Bulletin of the Geological Society of Denmark 45: 143–146. https://doi.org/10.37570/bgsd-1998-45-17.

    Article  Google Scholar 

  • Glaub, I., and M. Bundschuh. 1997. Comparative studies on Silurian and Jurassic/Lower Cretaceous microborings. Courier Forschungsinstitut Senckenberg 201: 123–135.

    Google Scholar 

  • Glaub, I., M. Gektidis, and K. Vogel. 2002. Microborings from different North Atlantic shelf areas—variability of the euphotic zone extension and implications for paleodepth reconstructions. Courier Forschungsinstitut Senckenberg 237: 25–37.

    Google Scholar 

  • Glaub, I., S. Golubić, M. Gektidis, G. Radtke, and K. Vogel. 2007. Microborings and microbial endoliths: Geological implications. In Chapter 21, trace fossils, ed. W. Miller, 368–381. New York: Elsevier. https://doi.org/10.1016/B978-044452949-7/50147-9.

    Chapter  Google Scholar 

  • Golubić, S., R.D. Perkins, and K.J. Lukas. 1975. Boring microorganisms and microborings in carbonate substrates. In The Study of Trace Fossils, ed. R.W. Frey, 229–259. Berlin: Springer. https://doi.org/10.1007/978-3-642-65923-2_12.

    Chapter  Google Scholar 

  • Guiry, M.D., and W. Guiry. 2007. “Corallina officinalis Linnaeus, 1758”. AlgaeBase. [Ryan Institute, National University of Ireland]. https://www.algaebase.org/search/species/detail/?species_id=107

  • Hind, K.R., P.W. Gabrielson, C.P. Jensen, and P.T. Martone. 2016. Crusticorallina gen. nov., a nongeniculate genus in the subfamily Corallinoideae (Corallinales, Rhodophyta). Journal of Phycology 52 (6): 929–941. https://doi.org/10.1111/jpy.12449. (Epub 2016 Sep 15).

    Article  CAS  Google Scholar 

  • Ippolitov, A.P., and A.V. Rzhavsky. 2015. Tube morphology, ultrastructures and mineralogy in Recent Spirorbinae (Annelida: Polychaeta: Serpulidae) II. Tribe Spirorbini. Invertebrate Zoology 12 (1): 61–92. https://doi.org/10.15298/invertzool.12.1.03.

    Article  Google Scholar 

  • Ippolitov, A.P., O. Vinn, E.K. Kupriyanova, and M. Jäger. 2014. Written in stone: History of serpulid polychaetes through time. Memoir of Museum Victoria 71: 123–159.

    Article  Google Scholar 

  • Kočí, T., J.L. Goedert, and J.S. Buckeridge. 2022. Eocene tube-dwelling annelids (Polychaeta: Sedentaria) from the Black Hills, western Washington State: The first record of Neodexiospira from North America. Paläontologische Zeitschrift 96: 631–653. https://doi.org/10.1007/s12542-022-00604-y.

    Article  Google Scholar 

  • Kundal, P. 2011. Generic distinguishing characteristics and stratigraphic ranges of fossil corallines: An update. Journal of the Geological Society of India 78: 571–586. https://doi.org/10.1007/s12594-011-0119-z.

    Article  Google Scholar 

  • Kupriyanova, E.K., A.V. Rzhavsky, and H.A. ten Hove. 2020. 7.4.7 Serpulidae Rafinesque, 1815. In Volume 2 Pleistoannelida, Sedentaria II, ed. G. Purschke, W. Westheide, and M. Böggemann, 213–275. Berlin: De Gruyter.

    Chapter  Google Scholar 

  • Lüning, K., and M.J. Dring. 1979. Continuous underwater light measurement near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region. Helgoländer Wissenschaftliche Meeresuntersuchungen 32: 403–424. https://doi.org/10.1007/BF02277985.

    Article  Google Scholar 

  • Luo, Q., Z. Zhu, Z. Zhu, R. Yang, F. Qian, H. Chen, and X. Yan. 2014. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS One 9 (4): e94354. https://doi.org/10.1371/journal.pone.0094354.

    Article  CAS  Google Scholar 

  • McCoy, S.J., C.A. Pfister, G. Olack, and A.S. Colman. 2016. Diurnal and tidal patterns of carbon uptake and calcification in geniculate inter-tidal coralline algae. Marine Ecology 37: 553–564. https://doi.org/10.1111/maec.12295.

    Article  Google Scholar 

  • Meyer, N. 2020. Polar microbioerosion patterns exemplified in Arctic and Antarctic barnacles [dissertation]. Universität Bremen.

  • Meyer, N., M. Wisshak, and A. Freiwald. 2020. Ichnodiversity and bathymetric range of microbioerosion traces in polar barnacles of Svalbard. Polar Research 39: 3766. https://doi.org/10.33265/polar.v39.3766.

    Article  CAS  Google Scholar 

  • Nash, M.C., G. Diaz-Pulido, A.S. Harvey, and W. Adey. 2019. Coralline algal calcification: A morphological and process-based understanding. PLoS One 14 (9): e0221396. https://doi.org/10.1371/journal.pone.0221396.

    Article  CAS  Google Scholar 

  • Peña, V., C. Vieira, J.C. Braga, J. Aguirre, A. Rösler, G. Baele, O. De Clerck, and L. Le Gall. 2020. Radiation of the coralline red algae (Corallinophycidae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny. Molecular Phylogenetics and Evolution 150: 106845. https://doi.org/10.1016/j.ympev.2020.106845.

    Article  Google Scholar 

  • Perreault, R.T., and J.S. Buckeridge. 2019. Paleogene Verrucidae (Cirripedia: Verrucomorpha) of North America, with descriptions of three new species. Zootaxa 4712: 34–50. https://doi.org/10.11646/zootaxa.4712.1.2.

    Article  Google Scholar 

  • Perry, C.T., and L.J. Hepburn. 2008. Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: Taphonomic signatures of reef accretion and reef depositional events. Earth-Science Reviews 86 (1–4): 106–144. https://doi.org/10.1016/j.earscirev.2007.08.006.

    Article  Google Scholar 

  • Pica, D., A. Tribollet, S. Golubić, M. Bo, C.G. Di Camillo, G. Bavestrello, and S. Puce. 2016. Microboring organisms in living stylasterid corals (Cnidaria, Hydrozoa). Marine Biology Research 12: 573–582. https://doi.org/10.1080/17451000.2016.1169298.

    Article  Google Scholar 

  • Pillai, T.G. 2009. Descriptions of new serpulid polychaetes from the Kimberleys of Australia and discussion of Australian and Indo-West Pacific species of Spirobranchus and superficially similar taxa. Records of the Australian Museum 61 (2): 93–199. https://doi.org/10.3853/j.0067-1975.61.2009.1489.

    Article  Google Scholar 

  • Prothero, D.R., and J.M. Armentrout. 1985. Magnetostratigraphic correlation of the Lincoln Creek Formation, Washington: Implications for the age of the Eocene/Oligocene boundary. Geology 13 (3): 208–211. https://doi.org/10.1130/0091-7613(1985)13%3c208:MCOTLC%3e2.0.CO;2.

    Article  Google Scholar 

  • Prothero, D.R., C. D. Jaquette, and J. M. Armentrout. 2001. Magnetic stratigraphy of the upper Eocene—upper Oligocene Lincoln Creek Formation, Porter Bluffs, Washington. In Magnetic Stratigraphy of the Pacific Coast Cenozoic, ed. Prothero DR, 169–178. Society for Sedimentary Geology (SEPM), Book 91.

  • Quaranta, F., L. Tomassetti, G. Vannucci, and M. Brandano. 2012. Coralline algae as environmental indicators: A case study from the Attard member (Chattian, Malta). Geodiversitas. 34 (1): 151–166. https://doi.org/10.5252/g2012n1a9.

    Article  Google Scholar 

  • Radtke, G. 1991. Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. Courier Forschungsinstitut Senckenberg 138: 1–185.

    Google Scholar 

  • Radtke, G. 1992. Microendolithic trace fossils of Paris Basin as facies indicators. Proceedings of the 7th International Coral Reef Symposium. 1; Guam; 419–426.

  • Radtke, G., S.E. Campbell, and S. Golubić. 2016. Conchocelichnus seilacheri igen. et isp. nov., a complex microboring trace of bangialean rhodophytes. Ichnos 23 (3–4): 228–236. https://doi.org/10.1080/10420940.2016.1199428.

    Article  Google Scholar 

  • Rau, W.W. 1966. Stratigraphy and Foraminifera of the Satsop River area, southern Olympic Peninsula, Washington. State of Washington, Division of Mines and Geology Bulletin 53: 1–66.

    Google Scholar 

  • Reddy, M.M. 2018. Taxonomy and systematics of the Bangiales (Rhodophyta) in South Africa using an integrative approach [dissertation]. Department of Biological Sciences, University of Cape Town, South Africa

  • Salamon, K., B. Kołodziej, and H. Löser. 2021. Diverse nature of ubiquitous microborings in Cenomanian corals (Saxonian Cretaceous Basin, Germany). Cretaceous Research 126: 104888. https://doi.org/10.1016/j.cretres.2021.104888.

    Article  Google Scholar 

  • Schmidt, H. 1992. Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich, bathymetrische Interpretation) [dissertation]. Frankfurt am Main: Geo1ogisch-Pa1äonto1ogisches Institut der J. W. Goethe-Universität.

  • Schmidt, H. 1993. Mikrobohrspuren in Makrobenthonten des Oberen Muschelkalks von SW-Deutschland. In Muschelkalk; Schöntaler Symposium 1991, ed. H. Hagdorn, and A. Seilacher A, 271–278. Stuttgart: Sonderbände der Gesellschaft für Naturkunde in Württemberg.

  • Seuss, B., M. Wisshak, R.H. Mapes, D.I. Hembree, N. Landman, and V. Lignier. 2016. Microbial bioerosion of erratic sub-fossil Nautilus shells in a karstic cenote (Lifou, Loyalty Islands, New Caledonia). Ichnos 23 (1–2): 108–115. https://doi.org/10.1080/10420940.2015.1030074.

    Article  Google Scholar 

  • Sutherland, J.E., S.C. Lindstrom, W.A. Nelson, J. Brodie, M.D. Lynch, M.S. Hwang, H.-G. Choi, M. Miyata, N. Kikuchi, M.C. Oliveira, et al. 2011. A new look at an ancient order: Generic revision of the Bangiales (Rhodophyta). Journal of Phycology 47 (5): 1131–1151. https://doi.org/10.1111/j.1529-8817.2011.01052.x.

    Article  Google Scholar 

  • Tribollet, A., D. Pica, S. Puce, G. Radtke, S.E. Campbell, and S. Golubić. 2018. Euendolithic Conchocelis stage (Bangiales, Rhodophyta) in the skeletons of live stylasterid reef corals. Marine Biodiversity 48 (4): 1855–1862. https://doi.org/10.1007/s12526-017-0684-5.

    Article  Google Scholar 

  • Van Winkle, K. 1918. Paleontology of the Oligocene of the Chehalis Valley, Washington. University of Washington, Publications in Geology 1 (2): 69–97.

    Google Scholar 

  • Vinn, O., H.A. ten Hove, H. Mutvei, and K. Kirsimäe. 2008. Ultrastructure and mineral composition of serpulid tubes (Polychaeta, Annelida). Zoological Journal of the Linnean Society 154: 633–650. https://doi.org/10.1111/j.1096-3642.2008.00421.x.

    Article  Google Scholar 

  • Vogel, K., and C.E. Brett. 2009. Record of microendoliths in different facies of the Upper Ordovician in the Cincinnati Arch region USA: The early history of light-related microendolithic zonation. Palaeogeography, Palaeoclimatology, Palaeoecology 281: 1–24. https://doi.org/10.1016/j.palaeo.2009.06.032.

    Article  Google Scholar 

  • Vogel, K., and L. Marincovich Jr. 2004. Paleobathymetric implications of microborings in Tertiary strata of Alaska, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 206 (1–2): 1–20. https://doi.org/10.1016/j.palaeo.2003.12.017.

    Article  Google Scholar 

  • Vogel, K., M. Bundschuh, I. Glaub, K. Hofmann, G. Radtke, and H. Schmidt. 1995. Hard substrate ichnocoenoses and their relations to light intensity and marine bathymetry. Neues Jahrbuch Für Geologie Und Palaontologie-Abhandlungen 195 (1–3): 49–61. https://doi.org/10.1127/njgpa/195/1995/49.

    Article  Google Scholar 

  • Vogel, K., W. Kiene, M. Gektidis, and G. Radtke. 1996. Scientific results from investigations of microbial borers and bioerosion in reef environments. In Global and regional controls on biogenic sedimentation. I. Reef evolution research reports, 2, ed. J. Reitner, F. Neuweiler, and Gunkel F, 139–143. Göttinger Arbeiten zur Geologie und Paläontologie.

  • Vogel, K., M. Gektidis, S. Golubić, W.E. Kiene, and G. Radtke. 2000. Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier reef, Australia: Implications for paleoecological reconstructions. Lethaia 33 (3): 190–204. https://doi.org/10.1080/00241160025100053.

    Article  Google Scholar 

  • Wilkinson, M., and E.M. Burrows. 1972. The distribution of marine shell-boring green algae. Journal of the Marine Biological Association of the UK 52 (1): 59–65. https://doi.org/10.1017/S0025315400018579.

    Article  Google Scholar 

  • Wisshak, M. 2006. High-latitude bioerosion: The Kosterfjord experiment. Lecture Notes in Earth Science, vol. 109. Berlin: Springer. https://doi.org/10.1007/978-3-540-36849-6.

    Book  Google Scholar 

  • Wisshak, M., B. Seuss, and A. Nützel. 2008. Evolutionary implications of an exceptionally preserved Carboniferous microboring assemblage in the Buckhorn Asphalt lagerstätte (Oklahoma, USA). In Current Developments in Bioerosion. Erlangen Earth Conference Series, ed. M. Wisshak and L. Tapanila, 21–54. Berlin: Springer. https://doi.org/10.1007/978-3-540-77598-0_2.

    Chapter  Google Scholar 

  • Wisshak, M., D. Knaust, and M. Bertling. 2019. Bioerosion ichnotaxa: review and annotated list. Facies 65: 24. https://doi.org/10.1007/s10347-019-0561-8.

    Article  Google Scholar 

  • Wisshak, M., N. Meyer, P. Kuklinski, A. Rüggeberg, and A. Freiwald. 2021. ‘Ten Years After’—a long-term settlement and bioerosion experiment in an Arctic rhodolith bed (Mosselbukta, Svalbard). Geobiology 20: 112–136. https://doi.org/10.1111/gbi.1246.

    Article  Google Scholar 

  • Woelkerling, W.J., and L.M. Irvine. 1986. The typification and status of Phymatolithon (Corallinaceae, Rhodophyta). British Phycological Journal 21: 55–80. https://doi.org/10.1080/00071618600650071.

    Article  Google Scholar 

  • Wray, J.L. 1977. Calcareous Algae. Developments in paleontology and stratigraphy, vol. 4, 1–185. Amsterdam: Elsevier Scientific Publishing Co.

    Google Scholar 

  • Xiao, S., Y. Zhang, and A.H. Knoll. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391 (6667): 553–558. https://doi.org/10.1038/35318.

    Article  CAS  Google Scholar 

  • Yoon, H.S., K.M. Müller, R.G. Sheath, F.D. Ott, and D. Bhattacharya. 2006. Defining the major lineages of red algae (Rhodophyta) 1. Journal of Phycology 42 (2): 482–492. https://doi.org/10.1111/j.1529-8817.2006.00210.x.

    Article  CAS  Google Scholar 

  • Zheng, B-F. 1984. Studies on the morphology of conchocelis of Porphyra katadai var. hemiphylla and related species [conference paper]. In: Bird CJ, Ragan MA, editors. Eleventh International Seaweed Symposium. Developments in Hydrobiology. 22; p. 209–212. https://doi.org/10.1007/978-94-009-6560-7_36.

Download references

Acknowledgements

We are grateful to Dale Vanslyke for allowing access to the Porter Creek locality and are indebted to Dr. Max Wisshak (Senckenberg am Meer, Wilhelmshaven, Germany) for his invaluable help in the identification of this trace fossil and his help with references. We thank Dr. Gudrun Radtke (Hessisches Landesamt für Naturschutz, Umwelt und Geologie Wiesbaden) and Dr. Guenther Schweigert (State Museum of Natural History, Stuttgart) for generous help in obtaining references. This research was financially supported by the Czech Science Foundation (GACR 18-05935S) and the Ministry of Culture of the Czech Republic (DKRVO 2024-2028 2.III.c, National Museum, 00023272). Additional support was obtained from the institutional projects of the Czech Academy of Sciences, Institute of Geology (RVO 67985831), Centre for Geosphere Dynamics (UNCE/SCI/006) and Göttingen Academy of Science and Humanities and Department of Geobiology-Geosciene Centre University of Göttingen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Kočí.

Additional information

Handling Editor: Lothar Vallon.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kočí, T., Veselská, M.K., Goedert, J.L. et al. First Eocene record of a bangialean rhodophyte (the endolithic microboring Conchocelichnus seilacheri) and coralline red algae from the Pacific Coast of North America. PalZ (2024). https://doi.org/10.1007/s12542-023-00678-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12542-023-00678-2

Keywords

Navigation