Skip to main content

Advertisement

Log in

An eddy, a wake and a plume: controls on bathyal foraminifera around Tobago, western tropical Atlantic Ocean

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

Oceanic islands in the paths of currents induce the development of wakes and stationary eddies. The situation to the lee of Tobago, western tropical Atlantic Ocean, is further complicated by the occurrence of the seasonally variable, hypopycnal Orinoco plume. Here we investigate the impact of the combined plume, wake and eddy on bathyal benthic foraminifera to the NW of Tobago. Three surface sediment samples were recovered from around each of five well-sites to the NW of Tobago, three of the sites (Warap-A, Cassra-A and Cassra-CC) being at upper bathyal depths and two (Bene-1, Sancoche-1) at middle bathyal depths. Warap-A, Cassra-A, Cassra-CC and Bene-1 form a transect along the northern side of the leeward wake, while the other two sites are in the vicinity of the stationary eddy. The samples obtained around Sancoche-1 were taken north of the wake. These were supplemented by samples from four 80-cm piston cores from upper bathyal and outer neritic depths sampled at ~ 10 cm intervals. Benthic foraminifera reveal different biofacies at upper (Warap-A, Cassra-A, Cassra-CC) and middle (Bene-1, Sancoche-1) bathyal depths. The upper bathyal biofacies is dominated by Cassidulina curvata and the middle bathyal biofacies contains abundant Uvigerina hispidocostata, both of which are indicative of a high nutrient flux. The presence of Martinottiella communis and M. pallida at Warap-A indicate that pore waters are low in dissolved oxygen in the immediate lee of the island. Percentages of the fauna as serial tests indicated decreasing current velocities with increasing depth, as confirmed by the high abundance of Cibicides ex gr. aknerianus in the shallowest water core. Upper bathyal bottom-current strength was at its lowest in the immediate lee of the island. Species indicative of a perennial nutrient flux were more abundant to the NW, where the interaction of the plume and eddy appears to concentrate nutrients. The short cores, each from a different biofacies, indicate that these environmental conditions have been in place for at least the later Holocene. The most northerly, upper bathyal core presented a stable community structure with low assemblage turnover, while two cores taken farther south (upper bathyal and outer neritic) had an expansive structure with high assemblage turnover. These data raise the possibility of using benthic foraminifera to track the positions of the plume, core and eddy throughout the later Neogene.

Kurzfassung

Ozeanische Inseln im Pfad großer Meeresströmungen erzeugen Wirbelzonen und stationäre Eddies. Im Lee der Insel Tobago im westlichen tropischen Atlantik wird die Situation zusätzlich durch das saisonale Auftreten des hypopyknischen Orinoco-Ausstroms erschwert. In dieser Studie untersuchen wir, welchen Einfluss eine Kombination von Flusswassereintrag, Wirbelzone und Eddies auf bathyale Benthosforaminiferen im Nordwesten von Tobago hat. Dazu wurden je drei Oberflächensedimentproben in der Umgebung von fünf Bohrungen im Nordwesten Tobagos genommen, wobei drei Bohrlokationen (Warap-A, Cassra-A und Cassra-CC) im oberen Bathyal und zwei (Bene-1, Sancoche -1) in mittleren Bathyal liegen. Warap-A, Cassra-A, Cassra-CC und Bene-1 bilden einen Transekt entlang der Nordseite der Leeschleppe, während die anderen beiden Lokationen in der Nähe des stationären Eddies liegen. Die Oberflächenproben, die um die Bohrung Sancoche-1 herum genommen wurden, liegen nördlich der Wirbelzone. Dieser Probensatz wurde mit vier 80 cm langen Kolbenkernen aus dem oberen Bathyal und äußerem Schelf ergänzt, die in 10 cm Intervallen beprobt wurden. Die benthischen Foraminiferen zeigen eine unterschiedliche Biofazies in geringeren (Warap-A, Cassra-A, Cassra-CC) und mittleren (Bene-1, Sancoche-1) Wassertiefen. Die obere bathyalen Biofazies wird von Cassidulina curvata dominiert, in der mittleren bathyalen Biofazies ist Uvigerina hispidocostata häufig, die beide auf einen hohen Nahrungseintrag hindeuten. Das Vorkommen der endobenthischen Arten Martinottiella communis und M. pallida in der Umgebung von Warap-A deuten darauf hin, dass das oberflächennahe Porenwasser im Lee und nahe der Insel wenig gelösten Sauerstoff enthält. Die prozentualen Anteile von Arten mit seriellen Gehäusen zeigen abnehmende Strömungsgeschwindigkeiten mit zunehmender Tiefe an, worauf die große Häufigkeit von Cibicdes ex gr. aknerianus im flachsten Kern ebenfalls hinweist. Die Intensität der Bodenströmung im oberen Bathyal war im unmittelbaren Lee der Insel am niedrigsten. Arten, die auf einen ganzjährigen Nahrungseintrag hinweisen, waren im NW der Insel häufiger, wo die Wechselwirkung von Orinocoeinfluss und Eddy-Aktivität Nährstoffe anzureichern scheint. Die kurzen Kerne, die jeweils aus verschiedenen Biofaziesbereichen stammen, weisen darauf hin, dass diese Umweltbedingungen zumindest über das spätere Holozän hinweg Bestand hatten. Der nördlichste Kern aus dem oberen Bathyal zeigt eine stabile Foraminiferengemeinschaft mit geringen Änderungen in ihrer Zusammensetzung über die Zeit, während die beiden weiter südlich gelegenen Kerne aus dem oberen Bathyal und vom äußeren Schelf einen Trend zu größerer Diversifizierung mit großen Veränderungen in der Artenzusammensetzung aufwiesen. Diese Ergebnisse eröffnen die Möglichkeit, die Position des stationären Eddies bei Tobago und die Lage des Orinocoausstroms mit benthischen Foraminiferen als Paläoindikatoren über das gesamte späte Neogen hinweg zu verfolgen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agard, J.B.R., and J.F. Gobin. 2000. The lesser antilles, Trinidad and Tobago. In Seas at the millennium: An environmental evaluation, vol. 1, ed. C. Sheppard, 627–641. Amsterdam: Elsevier.

    Google Scholar 

  • Arístegui, J., P. Tett, A. Hernández-Guerra, G. Basterretxea, M.F. Montero, K. Wild, P. Sangrá, S. Hernández-Leon, M. Canton, J.A. García-Braun, M. Pacheco, and E.D. Barton. 1997. The influence of island-generated eddies on chlorophyll distribution: A study of mesoscale variation around Gran Canaria. Deep Sea Research Part I: Oceanographic Research Papers 44: 71–96.

    Article  Google Scholar 

  • Arnault, S., B. Bourles, Y. Gouriou, and R. Chuchla. 1999. Intercomparison of the upper layer circulation of the western equatorial Atlantic Ocean: In situ and satellite data. Journal of Geophysical Research 104(C9): 121, 171–121, 194.

    Article  Google Scholar 

  • Baker, R.D., P. Hallock, E.F. Moses, D.E. Williams, and A. Ramirez. 2009. Larger foraminifers of the Florida reef tract, USA: Distribution patterns on reef rubble habitats. Journal of Foraminiferal Research 39: 267–277.

    Article  Google Scholar 

  • Berger, W.H., and F.L. Parker. 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science 168: 1345–1347.

    Article  Google Scholar 

  • Boltovskoy, E. 1959. Foraminifera as biological indicators in the study of ocean currents. Micropaleontology 5: 473–481.

    Article  Google Scholar 

  • Burkett, A.M., A.E. Rathburn, M. Elena Pérez, L.A. Levin, and J.B. Martin. 2016. Colonization of over a thousand Cibicidoides wuellerstorfi (foraminifera: Schwager, 1866) on artificial substrates in seep and adjacent off-seep locations in dysoxic, deep-sea environments. Deep Sea Research Part I: Oceanographic Research Papers 117: 39–50.

    Article  Google Scholar 

  • Buzas, M.A., and L.C. Hayek. 2011. Community structure: Global evaluation and the role of within community beta-diversity. Journal of Foraminiferal Research 41: 138–154.

    Article  Google Scholar 

  • Callec, Y., E. Deville, G. Desaubliaux, R. Griboulard, P. Huyghe, A. Mascle, G. Mascle, M. Noble, C. Padron de Carillo, and J. Schmitz. 2010. The Orinoco turbidite system: Tectonic controls on sea-floor morphology and sedimentation. AAPG Bulletin 94: 869–887.

    Article  Google Scholar 

  • Carr-Brown, B. 2007. The contribution of Trinidad micropaleontology to global E&P, 100 years of petroleum in Trinidad and Tobago. In Celebrating a century of commercial oil production, ed. Ministry of Energy and Energy Industries, 158–167. London: First Publishing.

  • Chérubin, L.M., and P.L. Richardson. 2007. Caribbean current variability and the influence of the Amazon and Orinoco freshwater plumes. Deep Sea Research Part I: Oceanographic Research Papers 54: 1451–1473.

    Article  Google Scholar 

  • Corredor, J.E., J. Morell, and A. Mendez. 1984. Dissolved nitrogen, phytoplankton biomass and island mass effects in the northeastern Caribbean Sea. Caribbean Journal of Science 20: 129–137.

    Google Scholar 

  • Cowen, R.K., and L.R. Castro. 1994. Relation of coral reef fish larval distributions to island scale circulation around Barbados, West Indies. Bulletin of Marine Science 54: 228–244.

    Google Scholar 

  • Cowen, R.K., K.M. Lwiza, S. Sponaugle, C.B. Paris, and D.B. Olson. 2000. Connectivity of marine populations: Open or closed? Science 287: 857–859.

    Article  Google Scholar 

  • Diz, P., G. Francés, S. Costas, C. Souto, and I. Alejo. 2004. Distribution of benthic foraminifera in coarse sediments, Ría de Vigo, NW Iberian margin. Journal of Foraminiferal Research 34: 258–275.

    Article  Google Scholar 

  • Drooger, C.W., and J.P. Kaasschieter. 1958. Foraminifera of the Orinoco-Trinidad-Paria Shelf. Report of the Orinoco Shelf Expedition, Verhandlungen Koninklijk Nederland Akademie Wetenschappelijke 4: 1–108.

    Google Scholar 

  • Emery, A.R. 1972. Eddy formation from an oceanic island: Ecological effects. Caribbean Journal of Science 12: 121–128.

    Google Scholar 

  • Febres-Ortega, G., and L.E. Herrera. 1976. Caribbean Sea circulation and water mass transports near the Lesser Antilles. Boletin del Instituto Oceanografico 15: 83–96.

    Google Scholar 

  • Figueroa, D.F. 2007. Variation of planktonic community structure along the Orinoco River Plume. M.Sc. thesis. San Juan: University of Puerto Rico.

  • Fiorini, F. 2015. Recent benthic foraminifera from the Caribbean continental slope and shelf off west of Colombia. Journal of South American Earth Sciences 60: 117–128.

    Article  Google Scholar 

  • Fuglister, F.C. 1951. Annual variations in current speed in the Gulf Stream System. Journal of Marine Research 10: 119–127.

    Google Scholar 

  • Gade, H. 1961. On some oceanographic observations in the southeastern Caribbean Sea and the adjacent Atlantic Ocean with special reference to the influence of the Orinoco River. Boletin del Instituto Oceanografico 1: 287–342.

    Google Scholar 

  • Grodsky, S.A., G. Reverdin, J.A. Carton, and V.J. Coles. 2014. Year-to-year salinity changes in the Amazon plume: Contrasting 2011 and 2012 Aquarius/SACD and SMOS satellite data. Remote Sensing of the Environment 140: 14–22.

    Article  Google Scholar 

  • Hanagata, S. 2006. Foraminiferal proxies of dissolved oxygen and their changes across the Miocene/Pliocene boundary in the Japan Sea. Stratigraphy 3: 285–306.

    Google Scholar 

  • Harlan, J.A., S.E. Swearer, R.R. Leben, and C.A. Fox. 2002. Surface circulation in a Caribbean island wake. Continental Shelf Research 22: 417–434.

    Article  Google Scholar 

  • Hayek, L.C., and M.A. Buzas. 2010. Surveying natural populations: Quantitative tools for assessing biodiversity. New York: Columbia University Press.

    Book  Google Scholar 

  • Hayek, L.C., and M.A. Buzas. 2013. On the proper and efficient use of diversity measures for individual field samples. Journal of Foraminiferal Research 43: 305–313.

    Article  Google Scholar 

  • Hayek, L.C., and B. Wilson. 2013. Quantifying assemblage turnover and species contributions at ecologic boundaries. PLoS ONE 8 (10): e74999. https://doi.org/10.1371/journal.pone.0074999.

    Article  Google Scholar 

  • Hayward, B.W., H.R. Grenfell, A.T. Sabaa, C.M. Hayward, and H.L. Neil. 2006. Ecological distribution of benthic foraminifera, offshore northeast New Zealand. Journal of Foraminiferal Research 36: 332–354.

    Article  Google Scholar 

  • Hayward, B.W., A.T. Sabaa, H.R. Grenfell, H. Neil, and H. Bostock. 2013. Ecological distribution of Recent deep-water foraminifera around New Zealand. Journal of Foraminiferal Research 43: 415–442.

    Article  Google Scholar 

  • Hofker, J. 1983. Zoological exploration of the continental shelf of Surinam: The foraminifera of the shelf of Surinam and the Guyanas. Zoologische Verhandelingen Uitgegeven door het Rijksmuseum van Natuurlijke Histoire te Leiden 201: 1–75.

    Google Scholar 

  • Hu, C., E.T. Montgomery, R.W. Schmitt, and F.E. Muller-Karger. 2004. The dispersal of the Amazon and Orinoco river water in the tropical Atlantic and Caribbean Sea: Observation from space and S-PALACE floats. Deep-Sea Research II 51: 1151–1171.

    Article  Google Scholar 

  • Jones, R.W. 2014. Foraminifera and their applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kaiho, K. 1994. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22: 719–722.

    Article  Google Scholar 

  • Kaiho, K. 1999. Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI). Marine Micropaleontology 37: 67–76.

    Article  Google Scholar 

  • Karstensen, J., L. Stramma, and M. Visbeck. 2008. Oxygen minimum zones in the eastern tropical Atlantic and Pacific Oceans. Progress in Oceanography 77: 331–350.

    Article  Google Scholar 

  • Lapointe, B.E., R. Langton, B.J. Bedford, A.C. Potts, O. Day, and C. Hud. 2010. Land-based nutrient enrichment of the Buccoo Reef Complex and fringing coral reefs of Tobago, West Indies. Marine Pollution Bulletin 60: 334–343.

    Article  Google Scholar 

  • Licari, L., and A. Mackensen. 2005. Benthic foraminifera off West Africa (1°N to 32°S): Do live assemblages from the topmost sediment reliably record environmental variability? Marine Micropaleontology 55: 205–233.

    Article  Google Scholar 

  • Licari, L.N., S. Schumacher, F. Wenzhoefer, M. Zabel, and A. Mackensen. 2003. Communities and microhabitats of living benthic foraminifera from the tropical east Atlantic: Impact of different productivity regimes. Journal of Foraminiferal Research 33: 10–31.

    Article  Google Scholar 

  • Linke, P., and G.F. Lutze. 1993. Microhabitat preferences of benthic foraminifera—a static concept or a dynamic adaptation to optimize food acquisition? Marine Micropaleontology 20: 215–234.

    Article  Google Scholar 

  • López, R., J.M. López, J. Morell, J.E. Corredor, and C.E. Del Castillo. 2013. Influence of the Orinoco River on the primary production of eastern Caribbean surface waters. Journal of Geophysical Research: Oceans 118: 4617–4632.

    Google Scholar 

  • Lutze, G.F., and W. Coulbourn. 1984. Recent benthic foraminifera from the continental margin of northwest Africa: Community structure and distribution. Marine Micropaleontology 8: 361–401.

    Article  Google Scholar 

  • Lutze, G.F., and H. Thiel. 1989. Epibenthic foraminifera from elevated microhabitats; Cibicidoides wuellerstorfi and Planulina ariminensis. Journal of Foraminiferal Research 19: 153–158.

    Article  Google Scholar 

  • Machain-Castillo, M.L., M.A. Monreal-Gómez, E. Arellano-Torres, M. Merino-Ibarra, and G. González-Chávez. 2008. Recent planktonic foraminiferal distribution patterns and their relation to hydrographic conditions of the Gulf of Tehuantepec, Mexican Pacific. Marine Micropaleontology 66: 103–119.

    Article  Google Scholar 

  • Martins, V., J. Dubert, J.-M. Jouanneau, O. Weber, E.F. da Silva, C. Patinha, J.M. Alveirinho Dias, and F. Rocha. 2007. A multiproxy approach of the Holocene evolution of shelf–slope circulation on the NW Iberian Continental Shelf. Marine Geology 239: 1–18.

    Article  Google Scholar 

  • Muller, J. 1959. Palynology of recent Orinoco delta and shelf sediments: reports of the Orinoco shelf expedition; volume 5. Micropaleontology 5: 1–32.

    Article  Google Scholar 

  • Murray, J.W. 2006. Ecology and applications of benthic foraminifera. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ovsepyan, E.A., and E.V. Ivanova. 2009. Benthic foraminiferal assemblages as indicators of the paleoceanographic conditions in the eastern Equatorial Pacific. Oceanology 49: 121–129.

    Article  Google Scholar 

  • Phleger, F.B. 1976. Benthic foraminiferids as indicators of organic production in marginal marine areas. In Proceedings of the First International Symposium on Benthonic Foraminifera of Continental Margins. Part A: Ecology and biology, C.T.Schafer, and B.R. Pelletier, 107–117. Halifax: Maritime Sediments.

  • Prentice, C.S., J.C. Weber, C.J. Crosby, and D. Ragona. 2010. Prehistoric earthquakes on the Caribbean–South American plate boundary, Central Range fault, Trinidad. Geology 38: 675–678.

    Article  Google Scholar 

  • Saunders, J.B., and H.M. Bolli. 1985. Trinidad’s contribution to world biostratigraphy. In Proceedings of the Fourth Latin American Geological Congress 1979, 781–795. Port-of-Spain: Geological Society of Trinidad and Tobago.

  • Schlager, W., J.J.G. Reijmer, and A. Droxler. 1994. Highstand shedding of carbonate platforms. Journal of Sedimentary Research, Section B: Stratigraphy and Global Studies 64B: 270–281.

    Google Scholar 

  • Schönfeld, J. 1997. The impact of the Mediterranean Outflow Water (MOW) on benthic foraminiferal assemblages and surface sediments at the southern Portuguese continental margin. Marine Micropaleontology 29: 211–236.

    Article  Google Scholar 

  • Schönfeld, J. 2002. Recent benthic foraminiferal assemblages in deep high-energy environments from the Gulf of Cadiz (Spain). Marine Micropaleontology 44: 141–162.

    Article  Google Scholar 

  • Schott, F.A., J. Fischer, and L. Stramma. 1998. Transports and pathways of the upper-layer circulation in the western tropical Atlantic. Journal of Physical Oceanography 28: 1904–1928.

    Article  Google Scholar 

  • Schumacher, S., F.J. Jorissen, D. Dissard, K.E. Larkin, and A.J. Gooday. 2007. Live (rose Bengal stained) and dead benthic foraminifera from the oxygen minimum zone of the Pakistan continental margin (Arabian Sea). Marine Micropaleontology 62: 45–73.

    Article  Google Scholar 

  • Sen Gupta, B.K., and M.L. Machain-Castillo. 1993. Benthic foraminifera in oxygen-poor habitats. Marine Micropaleontology 20: 183–201.

    Article  Google Scholar 

  • Smart, C.W., and A.J. Gooday. 2006. Benthic foraminiferal trends in relation to an organic enrichment gradient on the continental slope (850 m water depth) off North Carolina (USA). Journal of Foraminiferal Research 36: 34–43.

    Article  Google Scholar 

  • Stefanoudis, P.V., B.J. Bett, and A.J. Gooday. 2016. Abyssal hills: Influence of topography on benthic foraminiferal assemblages. Progress in Oceanography 148: 44–55.

    Article  Google Scholar 

  • Tan, P.-N., M. Steinbach, and V. Kumar. 2005. Introduction to data mining. Harlow: Pearson Education Limited.

  • Tetard, M., L. Licari, and L. Beaufort. 2017. Oxygen history off Baja California over the last 80 kyr: A new foraminiferal-based record. Paleoceanography 32: 246–264.

    Article  Google Scholar 

  • Vieira, F.S., E.A. Machado Koutsoukos, A.J. Machado, and M.A. Trindade Dantas. 2015. Biofaciological zonation of benthic foraminifera of the continental shelf of Campos Basin, SE Brazil. Quaternary International 377: 18–27.

    Article  Google Scholar 

  • Weber, J.C. 2009. Neotectonics in the Trinidad and Tobago, West Indies segment of the Caribbean-South American plate boundary. Occasional Papers of the Geological Institute of Hungary 204: 21–29.

    Google Scholar 

  • Weedon, G.G. 2005. Time-series analysis and cyclostratigraphy: Examining stratigraphic records of environmental cycles. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wilson, B. 2006. Trouble in paradise? A comparison of 1953 and 2005 benthonic foraminiferal seafloor assemblages at the Ibis Field, offshore eastern Trinidad, West Indies. Journal of Micropalaeontology 25: 157–164.

    Article  Google Scholar 

  • Wilson, B. 2008. Distributions of ostracod (Crustacea) biofacies on the continental shelf off south-east Trinidad, western central Atlantic Ocean, suggest the location of an offshore river-induced front within the Orinoco Plume. Senckenbergiana Lethaea 88: 199–211.

    Article  Google Scholar 

  • Wilson, B. 2011. Αlpha and beta diversities of Late Quaternary bathyal benthonic foraminiferal communities in the NE Caribbean Sea. Journal of Foraminiferal Research 41: 40–47.

    Google Scholar 

  • Wilson, B. 2012. Biogeography and ecostratigraphy of Late Quaternary planktonic foraminiferal taphocoenoses in the Leeward Islands, Lesser Antilles, NE Caribbean Sea. Marine Micropaleontology 86–87: 1–12.

    Article  Google Scholar 

  • Wilson, B., J.C. Coimbra, and L.C. Hayek. 2014. Ostracoda (Arthropoda, Crustacea) in a Miocene oxygen minimum zone, Trinidad, West Indies: a test of the Platycopid Signal Hypothesis. Journal of South American Earth Sciences 54: 210–216.

    Article  Google Scholar 

  • Wilson, B., and L.C. Hayek. 2015a. Distinguishing relative specialist and generalist species in the fossil record. Marine Micropaleontology 119: 7–16.

    Article  Google Scholar 

  • Wilson, B., and L.C. Hayek. 2015b. Late Quaternary benthic foraminifera and the Orinoco Plume. Marine Micropaleontology 121: 85–96.

    Article  Google Scholar 

  • Wolanski, E., R.H. Richmond, G. Davis, E. Deleersnijder, and R.R. Leben. 2003. Eddies around Guam, an island in the Mariana Islands group. Continental Shelf Research 23: 991–1003.

    Article  Google Scholar 

  • Zwaan, G.J. van der, and F.J. Jorissen. 1991. Biofacial patterns in river-induced shelf anoxia. In Modern and ancient continental shelf anoxia, 65–82, eds. R.V. Tyson and T.H. Pearson. London: Geological Society of London. (Geological Society of London, Special Publication 58).

Download references

Acknowledgements

Thanks are due to Coastal Dynamics Limited of Trinidad and Tobago for the box-corer samples and the screen grab of the leeward eddy off Tobago, and to Centrica PLC for access to the cores. BW gratefully acknowledges financial assistance from the Trinidad and Tobago Ministry of Energy and Energy Affairs, and from the University of the West Indies’ Campus Research and Publication Fund. Very helpful reviews were provided by Anthony King, an anonymous reviewer and Associate Editor Peter Frenzel, comments from all of whom improved this paper greatly. Joachim Schönfeld kindly translated the abstract into German.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent Wilson.

Additional information

Handling editor: Peter Frenzel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 52 kb). Raw data for benthic foraminifera in all of the samples used in this study

12542_2018_402_MOESM2_ESM.xlsx

Supplementary material 2 (XLSX 17 kb). Percentage abundances of the commonest species in the seafloor and core-top samples used in this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, B., Hayek, LA.C. & Ramdin, K.A. An eddy, a wake and a plume: controls on bathyal foraminifera around Tobago, western tropical Atlantic Ocean. PalZ 92, 561–575 (2018). https://doi.org/10.1007/s12542-018-0402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-018-0402-z

Keywords

Schlüsselwörter

Navigation