Skip to main content
Log in

The Jinxian Biota revisited: taphonomy and body plan of the Neoproterozoic discoid fossils from the southern Liaodong Peninsula, North China

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

The fossil record indicates that complex multicellular organisms started to become dominant in the second half of the Neoproterozoic. However, many macroscopic fossils of this period are not yet well understood. As one example, the Jinxian Biota includes some affinity-unresolved, millimeter- to centimeter-sized discoid fossils of probable pre-Ediacaran age from the shales of the Xingmincun Formation, in southern Liaodong Peninsula, China. This paper presents new observations of these fossils based on new material. Three types of preservation were identified and analyzed. The organisms were probably transported by turbidity currents, rapidly buried in fine-grained deposits and then compacted to yield thin films. Pyrite- and carbonate-related mineralization may have been involved in their early diagenesis, but local-controlled late diagenesis altered the fossil-related mineral composition to that observed today. The concentric annular relief on the fossil surfaces exhibits a “half convex, half concave” pattern, which is interpreted to reflect the differentiated mechanical nature between adjacent annuli. New specimens have been found that support the existence of programmed fission and budding. In addition, another group of previously ignored discoid fossils are first described here. With the same preservation as the “normal” discs, these fossils lack any concentric relief and always occur in clusters. The relationship between the two types of discs remains unclear. Even with all of the new information, it remains impossible to indubitably correlate the Jinxian Biota to any known taxonomic group. However, it is quite probable that these fossils represent a group of eukaryotic organisms.

Kurzfassung

Der fossile Bericht zeigt, dass größere komplexe Organismen erst in der zweiten Hälfte des Neoproterozoikums (Cryogenium) erscheinen. Allerdings sind diese Fossilien nur schwer interpretierbar und es ist nicht möglich sie heutigen Metazoen zu zuordnen. Ein Beispiel dafür sind die bis einige Zentimeter großen scheibenförmigen Fossilien aus der Xingmincun Formation (südliche Liaodong Halbinsel, Nordchina). In der vorliegenden Arbeit werden neue Beobachtungen zur Paläobiologie dieser Fossilien beschrieben basierend auf drei unterschiedlichen Erhaltungsstadien. Die Organismen wurden sehr wahrscheinlich in Suspensionswolken von feinkörnigen Mikroturbiditen transportiert und durch diesen Prozess rasch im Sediment eingebettet. Durch diesen Vorgang wurden sie zu dünnen Scheiben kompaktiert. Es lassen sich drei unterschiedliche Erhaltungstypen, bedingt durch unterschiedliche diagenetische Bedingungen, unterscheiden. Die drei verschiedenen Diagenestypen unterscheiden sich in den assoziierten Mineralien und in der Dicke der Scheiben. Die Scheiben zeigen konzentrische, reliefartige Muster mit halb konvexen und halb konkaven Kompaktionsstrukturen. Neben diesen spezifischen Oberflächenstrukturen finden sich Teilungs- und Knospungsmuster. Es wird eine weitere Form dieser Scheiben-Fossilien beschrieben, die keine konzentrischen Strukturen aufweisen und stets zusammen mit vielen Individuen auftreten (Schwarm). Die vorgestellten Fossilien zeigen gute Übereinstimmungen mit den “Beltanelliformis” Fossilien der unterkambrischen Pusa Formation in Spanien. Eine engere taxonomische Zuordnung zu einem bekannten Taxon konnte bis dato nicht vorgenommen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adl, S.M., A.G.B. Simpson, M.A. Farmer, R.A. Andersen, O.R. Anderson, J.R. Barta, S.S. Bowser, et al. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology 52(5): 399–451.

    Article  Google Scholar 

  • Allison, P.A. 1988. Konservat-Lagerstatten: Cause and classification. Paleobiology 14(4): 331–344.

    Article  Google Scholar 

  • Bailey, J.V., S.B. Joye, K.M. Kalanetra, B.E. Flood, and F.A. Corsetti. 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature 445: 198–201.

    Article  Google Scholar 

  • Bengtson, S., B. Rasmussen, and B. Krapež. 2007. The Paleoproterozoic megascopic Stirling biota. Paleobiology 33(3): 351–381.

    Article  Google Scholar 

  • Brasier, M.D., A. Perejón, and D.S. José. 1979. Discovery of an important fossiliferous Precambrian-Cambrian sequence in Spain. Estudios Geológicos 35: 379–383.

    Google Scholar 

  • Butterfield, N.J. 2009. Modes of pre-Ediacaran multicellularity. Precambrian Research 173: 201–211.

    Article  Google Scholar 

  • Butterfield, N.J. 1995. Secular distribution of Burgess-Shale-type preservation. Lethaia 28(1): 1–13.

    Article  Google Scholar 

  • Butterfield, N.J., U. Balthasar, and L.A. Wilson. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology 50(3): 537–543.

    Article  Google Scholar 

  • Cao, R., T. Tang, and Y. Xue. 1988. The connection of the Upper Precambrian in N. China with the Sinian system in S. China. Geological Review 34(2): 173–178.

    Google Scholar 

  • Cruse, T., and L.B. Harris. 1994. Ediacaran fossils from the Stirling Range Formation, Western Australia. Precambrian Research 67: 1–10.

    Article  Google Scholar 

  • Duan, J., and S. An. 1994. On the subdivision and correlation of Upper Precambrian System in South Liaoning Province, China. Liaoning Geology 1–2: 30–43.

    Google Scholar 

  • Dutta, S., M. Steiner, S. Banerjee, B.-D. Erdtmann, S. Jeevankumar, and U. Mann. 2006. Chuaria circularis from the early Mesoproterozoic Suket Shale, Vindhyan Supergroup, India: Insights from light and electron microscopy and pyrolysis-gas chromatography. Journal of Earth System Science 115(1): 99–112.

    Article  Google Scholar 

  • Fairchild, I.J., B. Spiro, P.M. Herrington, and T. Song. 2000. Controls on Sr and C isotope compositions of Neoproterozoic Sr rich limestones of East Greenland and North China. SEPM (Society for Sedimentary Geology) 67: 297–313. (Special Publication).

    Google Scholar 

  • Gehling, J.G., G.M. Narbonne, and M.M. Anderson. 2000. The first named Ediacaran body fossils, Aspidella terranovica. Palaeontology 43(3): 427–456.

    Article  Google Scholar 

  • Gerdes, G., M. Claes, K. Dunajtschik-Piewak, H. Riege, W. Krumbein, and H.-E. Reineck. 1993. Contribution of microbial mats to sedimentary surface structures. Facies 29(1): 61–74.

    Article  Google Scholar 

  • Geological Survey Group of Liaoning Province Team 1. 1972. Instruction Book for the 1:200000 Geological map of Fuzhou, Lvshun, Dalian and Dengshahe Region. In Geological Map of Liaoning Province.

  • Goldstein, S.T. 2002. Foraminifera: A biological overview. In Modern Foraminifera, ed. B.K.S. Gupta, 37–55. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers.

    Google Scholar 

  • Grazhdankin, D., and G. Gerdes. 2007. Ediacaran microbial colonies. Lethaia 40(3): 201–210.

    Article  Google Scholar 

  • Hofmann, H.J. 1985. The Mid-Proterozoic Little Dal Macrobiota, Mackenzie Mountains, North-West Canada. Palaeontology 28(2): 331–354.

    Google Scholar 

  • Hofmann, H.J., G.M. Narbonne, and J.D. Aitken. 1990. Ediacaran remains from intertillite beds in northwestern Canada. Geology 18(12): 1199–1202.

    Article  Google Scholar 

  • Hong, Z., Z. Huang, and X. Liu. 1991. Geology of Upper Precambrian in southern Liaodong Peninsula. Special Reports on Geology from the Ministry of Geology and Mineral Resources, People’s Republic of China. Beijing: Geological Publishing House.

  • Hong, Z., Z. Huang, X. Yang, J. Lan, B. Xian, and Y. Yang. 1988. Medusoid fossils from the Sinian Xingmincun Formation of southern Liaoning. Acta Geologica Sinica 62(3): 200–209.

    Google Scholar 

  • Hong, Z., Y. Yang, and X. Liu. 1990. Archaeocyathid fossils from the Lower Cambrian Jianchang Formation of the southern Liaodong Peninsula. Geological Review 36(6): 558–563.

    Google Scholar 

  • Jensen, S., T. Palacios, and M.M. Mus. 2007. A brief review of the fossil record of the Ediacaran-Cambrian transition in the area of Montes de Toledo-Guadalupe, Spain. Geological Society, London, Special Publications 286(1): 223–235.

    Article  Google Scholar 

  • Lei, M., and X. Zhang. 2008. Research on morphology of modern microbial colonies and the implication for interpreting the affinities of the Ediacara Biota. Acta Palaeontologica Sinica 47(4): 468–476.

    Google Scholar 

  • Lobban, C.S., and P.J. Harrison. 1997. Seaweed life histories. In Seaweed Ecology and Physiology, 32–47. Cambridge: Cambridge University Press.

  • MacGabhann, B.A. 2007. Discoidal fossils of the Ediacaran biota: A review of current understanding. In The Rise and Fall of the Ediacaran Biota, eds. P. Vickers-Rich, and P. Komarower, 297–313. London: Geological Society (London, Special Publications).

  • Maruyama, Y.K. 2004. Occurrence in the field of a long-term, year-round, stable population of placozoans. The Biological Bulletin 206(1): 55–60.

    Article  Google Scholar 

  • Meert, J.G., A.S. Gibsher, N.M. Levashova, W.C. Grice, G.D. Kamenov, and A.B. Ryabinin. 2011. Glaciation and ~770 Ma Ediacara (?) fossils from the Lesser Karatau microcontinent, Kazakhstan. Gondwana Research 19(4): 867–880.

    Article  Google Scholar 

  • Morad, S. 1986. SEM study of authigenic rutile, anatase and brookite in Proterozoic sandstones from Sweden. Sedimentary Geology 46(1–2): 77–89.

    Article  Google Scholar 

  • Narbonne, G.M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Reviews of Earth and Planetary Sciences 33: 421–442.

    Article  Google Scholar 

  • Narbonne, G.M., S. Xiao, and G.A. Shields. 2012. The Ediacaran Period. In The Geological Time Scale 2012, eds. F.M. Gradstein, J.G. Ogg, M.Schmitz, and G. Ogg, 413–435. Elsevier.

  • Niu, S., M. Wang, and H. Dong. 1988. The discovery of the fossil medusoids (genera Cyclomedusa etc., Cnidaria) from Xingmincun formation, Sinian system in Jinxian County, Liaoning Province, China and its significance. Bulletin of the Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 19: 75–86.

    Google Scholar 

  • Orr, P.J., D.E.G. Briggs, and S.L. Kearns. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science 281: 1173–1175.

    Article  Google Scholar 

  • Ou, Z., and F. Meng. 2013. Precambrian “medusoid” fossils from the Xingmincun Formation of southern Liaoning Province: A new insight. Acta Micropalaeontologica Sinica 30(1): 99–106.

    Google Scholar 

  • Peterson, K.J., B. Waggoner, and J.W. Hagadorn. 2003. A fungal analog for Newfoundland Ediacaran fossils? Integrative and Comparative Biology 43(1): 127–136.

    Article  Google Scholar 

  • Qiao, X., L. Gao, and Y. Peng. 2001. Neoproterozoic in Paleo-Tanlu Fault Zone: Catastrophe, Sequences and Biostratigraphy, 128. Beijing: Geological Publishing House.

    Google Scholar 

  • Russell, F.S. 1953. Introduction: The structural characters of Medusae. In The medusae of the British Isles, 1–21. Cambridge: Cambridge University Press.

  • Schiffbauer, J.D., S. Xiao, Y. Cai, A.F. Wallace, H. Hua, J. Hunter, H. Xu, Y. Peng, and A.J. Kaufman. 2014. A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression. Nature Communications 5: 5754.

    Article  Google Scholar 

  • Sharma, M., S. Mishra, S. Dutta, S. Banerjee, and Y. Shukla. 2009. On the affinity of Chuaria-Tawuia complex: A multidisciplinary study. Precambrian Research 173(1–4): 123–136.

    Article  Google Scholar 

  • Shields, G.A. 2002. ‘Molar-tooth microspar’: A chemical explanation for its disappearance ~750 Ma. Terra Nova 14: 108–113.

    Article  Google Scholar 

  • Shields-Zhou, G.A., A.C. Hill, and B.A. MacGabhann. 2012. The Cryogenian Period. In The Geological Time Scale 2012, eds. F.M. Gradstein, J.G. Ogg, M. Schmitz, and G. Ogg, 393–411. Elsevier.

  • Srivastava, M., E. Begovic, J. Chapman, N.H. Putnam, U. Hellsten, T. Kawashima, A. Kuo, et al. 2008. The Trichoplax genome and the nature of placozoans. Nature 454(7207): 955–960.

    Article  Google Scholar 

  • Stretch, J.J., and J.M. King. 1980. Direct fission: An undescribed reproductive method in hydromedusae. Bulletin of Marine Science 30(2): 522–525.

    Google Scholar 

  • Tang, F. 1997. Megafossils and stratigraphy of the Late Precambrian strata in eastern margin of the North China Platform. Unpublished PhD thesis, 56. Beijing: Chinese Academy of Geological Sciences.

  • Tang, F., C. Yin, L. Gao, P. Liu, Z. Wang, and S. Chen. 2009. Macrofossil records of the Neoproterozoic in the eastern of North China Craton: An implement of Neoproterozoic biostratigraphy. Geological Review 55(3): 305–317.

    Google Scholar 

  • Thiemann, M., and A. Ruthmann. 1991. Alternative modes of asexual reproduction in Trichoplax adhaerens (Placozoa). Zoomorphology 110(3): 165–174.

    Article  Google Scholar 

  • Totten, M.W., and H. Blatt. 1996. Sources of silica from the illite to muscovite transformation during late-stage diagenesis of shales. SEMP 55: 85–92 (Special Publication).

  • Walker, G.M., and N.A. White. 2005. Introduction to fungal physiology. In Fungi: Biology and Applications, ed. K. Kavanagh, 1–35. Chichester: Wiley.

    Chapter  Google Scholar 

  • Wang, M. 1991. Sinian medusas from Dalian, Liaoning Province, China. Journal of Changchun University of Earth Science 21(3): 259–312.

    Google Scholar 

  • Xiao, S., J.D. Schiffbauer, K.A. McFadden, and J. Hunter. 2010. Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: Implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation. Earth and Planetary Science Letters 297(3–4): 481–495.

    Article  Google Scholar 

  • Xiao, S., B. Shen, Q. Tang, A.J. Kaufman, X. Yuan, J. Li, and M. Qian. 2014. Biostratigraphic and chemostratigraphic constraints on the age of Early Neoproterozoic carbonate successions in North China. Precambrian Research 246: 208–225.

    Article  Google Scholar 

  • Xiao, S., X. Yuan, M. Steiner, and A.H. Knoll. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe Biota, South China. Journal of Paleontology 76(2): 347–376.

    Article  Google Scholar 

  • Xing, Y., and G. Liu. 1979. Coelenterate fossils from the Sinian System of southern Liaoning and its stratigraphical significance. Acta Geologica Sinica 3: 168–172.

    Google Scholar 

  • Xing, Y. et al. 1989. Upper Precambrian in China. Stratigraphy of China, vol. 3, 314. Beijing: Geological Publishing House.

  • Xue, Y., R. Cao, T. Tang, L. Yin, C. Yu, and J. Yang. 2001. The Sinian stratigraphic sequence of the Yangtze region and correlation to the Late Precambrian strata of North China. Journal of Stratigraphy 25(3): 207–234.

    Google Scholar 

  • Yang, S. 1984. Late Precambrian microplant fossils from southern Liaodong Peninsula and their stratigraphic significance. Bulletin of the Shenyang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 10: 107–130.

    Google Scholar 

  • Yang, D., W. Xu, Y. Xu, Q. Wang, F. Pei, and F. Wang. 2012. U-Pb ages and Hf isotope data from detrital zircons in the Neoproterozoic sandstones of northern Jiangsu and southern Liaoning Provinces, China: Implications for the Late Precambrian evolution of the southeastern North China Craton. Precambrian Research 216–219: 162–176.

    Article  Google Scholar 

  • Young, G.A., and J.W. Hagadorn. 2010. The fossil record of cnidarian medusae. Palaeoworld 19(3–4): 212–221.

    Article  Google Scholar 

  • Zhang, X., H. Hua, and J. Reitner. 2006. A new type of Precambrian megascopic fossils: The Jinxian biota from northeastern China. Facies 52: 169–181.

    Article  Google Scholar 

  • Zhao, F., J.-B. Caron, S. Hu, and M. Zhu. 2009. Quantitative analysis of taphofacies and paleocommunities in the Early Cambrian Chengjiang Lagerstätte. Palaios 24(12): 826–839.

    Article  Google Scholar 

  • Zheng, W., J. Yang, T. Hong, X. Tao, and Z. Wang. 2004. Sr and C isotopic correlation and the age boundary determination for the Neoproterozoic in the southern Liaoning and northern Jiangsu—northern Anhui Provinces. Geological Journal of China Universities 10(2): 165–178.

    Google Scholar 

  • Zhu, M., L.E. Babcock, and M. Steiner. 2005. Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China): Testing the roles of organic preservation and diagenetic alteration in exceptional preservation. Palaeogeography, Palaeoclimatology, Palaeoecology 220: 31–46.

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate Prof. X. Zhang (Northwest University, China) for granting us access to his fossil collection; M. Wang, L. Na, and H. He for the assistance provided in the field; and X. Cheng, C. Wang, E. Zhuo, and Dr. N. Schäfer for the help provided with the laboratory work. The discussions with and suggestions from Dr. Z. Yin, Dr. S. Hu, Dr. M. Lü, Prof. D. Jackson, and Dr. B.A. MacGabhann were enlightening and beneficial. We are also grateful to the reviewers Dr. S. Jensen and Dr. J. Schiffbauer for their encouraging and constructive comments on the manuscripts. The project was supported by the Chinese Academy of Science (KZZD-EW-02-2), the Ministry of Science and Technology of China (2013CB835006), and the National Natural Science Foundation of China. The Courant Research Center of Geobiology—Göttingen (German Excellence Initiative, DFG) and the China Scholarship Council (CSC) are also acknowledged for the financial support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12542_2016_289_MOESM1_ESM.xlsx

Supp. 1 Size data used in Fig. 5d–f and Fig. 12 (XLSX 42 kb)

12542_2016_289_MOESM2_ESM.xlsx

Supp. 2 Fossil thickness used in the diagram shown in Fig. 5i (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Zhu, M. & Reitner, J. The Jinxian Biota revisited: taphonomy and body plan of the Neoproterozoic discoid fossils from the southern Liaodong Peninsula, North China. PalZ 90, 205–224 (2016). https://doi.org/10.1007/s12542-016-0289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-016-0289-5

Keywords

Schlüsselwörter

Navigation