Skip to main content
Log in

Effects of Temperature on Optical Aberrations in Beam Delivery Components

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The effects of temperature on aberrations in the mirrors and lenses of beam delivery systems were analyzed. Aberrations were derived using the Zernike polynomial and a Shack-Hartmann wavefront sensor. As the temperature rose, aberrations became more pronounced; in particular, orthogonal aberrations significantly increased. Computational analysis revealed that the aberrations were attributable to variations in the thermal expansion coefficients of various components of the anisotropic structure. The analytical and experimental results were similar. As the temperature rose, tilt aberrations significantly increased; the y-tilts of mirrors and lenses differed. An optical component realignment method was used to reduce aberrations as the temperature rose. We used the tilting screw to change the position of the second mirror, then used the linear slide to reduce defocusing aberration. These calibrations reduced aberrations to levels comparable with their initial values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yamamuro, Y., Shimoyama, T., & Yan, J. (2022). Microscale surface patterning of zirconia by femtosecond pulsed laser irradiation. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(2), 619–632. https://doi.org/10.1007/s40684-021-00362-3

    Article  Google Scholar 

  2. Park, S., Lee, J., Kwon, E., Kim, D., Shin, S., Jeong, S., & Park, K. (2022). 3D sensing system for laser-induced breakdown spectroscopy-based metal scrap identification. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-021-00364-1

    Article  Google Scholar 

  3. Yang, D., & Zou, J. (2022). Precision analysis of flatness measurement using laser tracker. International Journal of Precision Engineering and Manufacturing, 23(7), 721–732. https://doi.org/10.1007/s12541-022-00660-z1

    Article  MathSciNet  Google Scholar 

  4. Wang, Y., Alharbi, M., Bradley, T. D., et al. (2013). Hollow-core photonic crystal fibre for high power laser beam delivery. High Power Laser Science and Engineering, 1(1), 17–28. https://doi.org/10.1017/hpl.2013.3

    Article  CAS  Google Scholar 

  5. Im, H., Oh, K. H., Kim, S. G., & Jeong, S. (2009). Application of etchant jet for laser micro-machining of metal channels. International Journal of Precision Engineering and Manufacturing, 10, 101–105. https://doi.org/10.1007/s12541-009-0077-1

    Article  Google Scholar 

  6. Kong, J. H., & Lee, S. W. (2023). Development of melt-pool monitoring system based on degree of irregularity for defect diagnosis of directed energy deposition process. International Journal of Precision Engineering and Manufacturing-Smart Technology, 1(2), 137–143. https://doi.org/10.57062/ijpem-st.2023.0045

    Article  Google Scholar 

  7. Ma, Y. W., Park, J. H., Lee, S. J., Lee, J., Cho, S., & Shin, B. S. (2023). Fabrication system for large-area seamless nanopatterned cylinder mold using the spiral laser interference exposure method. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(1), 1–7. https://doi.org/10.1007/s40684-022-00423-1

    Article  CAS  Google Scholar 

  8. Zhdanov, B. V., & Knize, R. J. (2012). Review of alkali laser research and development. Optical Engineering, 52(2), 021010–021010. https://doi.org/10.1117/1.OE.52.2.021010

    Article  ADS  CAS  Google Scholar 

  9. Kränkel, C., Marzahl, D. T., Moglia, F., et al. (2016). Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers. Laser & Photonics Reviews, 10(4), 548–568. https://doi.org/10.1002/lpor.201500290

    Article  ADS  CAS  Google Scholar 

  10. Nadimi, M., Waritanant, T., & Major, A. (2017). High power and beam quality continuous-wave Nd:GdVO_4 laser in-band diode-pumped at 912 nm. Photonics Research, 5(4), 346–349. https://doi.org/10.1364/prj.5.000346

    Article  CAS  Google Scholar 

  11. Franko, M., Goljat, L., Liu, M., et al. (2023). Recent progress and applications of thermal lens spectrometry and photothermal beam deflection techniques in environmental sensing. Sensors, 23(1), 472. https://doi.org/10.3390/s23010472

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scaggs, M., & Haas, G. (2015). Optical alignment influenced aberrations in laser beam delivery systems and their correction. In Laser Resonators, Microresonators, and Beam Control XVII, 9343, 99–108. https://doi.org/10.1117/12.2076630

    Article  Google Scholar 

  13. Yu, X., Gillmer, S. R., & Ellis, J. D. (2015). Beam geometry, alignment, and wavefront aberration effects on interferometric differential wavefront sensing. Measurement Science and Technology, 26(12), 125203. https://doi.org/10.1088/0957-0233/26/12/125203

    Article  ADS  CAS  Google Scholar 

  14. Kim, W. B., Moon, S. D., Kim, H. S., et al. (2009). Optical design and manufacturing technology for high resolution laser scanning unit. International Journal of Precision Engineering and Manufacturing, 10, 141–146. https://doi.org/10.1007/s12541-009-0105-1

    Article  Google Scholar 

  15. Kligman, B. E., Baartman, B. J., & Dupps, W. J., Jr. (2016). Errors in treatment of lower order aberrations and induction of higher order aberrations in laser refractive surgery. International Ophthalmology Clinics, 56(2), 19. https://doi.org/10.1097/IIO.0000000000000113

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lutzmann, P., Göhler, B., Hill, C. A., & Putten, F. V. (2017). Laser vibration sensing at Fraunhofer IOSB: Review and applications. Optical Engineering, 56(3), 031215–031215. https://doi.org/10.1117/1.OE.56.3.031215

    Article  ADS  Google Scholar 

  17. Meng, L., Huang, Z., Han, Z., et al. (2018). Simulation and experiment studies of aberration effects on the measurement of laser beam quality factor (M2). Optics and Lasers Engineering, 100, 226–233. https://doi.org/10.1016/j.optlaseng.2017.09.005

    Article  ADS  Google Scholar 

  18. Köhler, M., Tóth, T., Kreybohm, A., et al. (2020). Effects of reduced ambient pressure and beam oscillation on gap bridging ability during solid-state laser beam welding. Journal of Manufacturing and Materials Processing, 4(2), 40. https://doi.org/10.3390/jmmp4020040

    Article  CAS  Google Scholar 

  19. Lo, J. I., Peng, Y. C., Lu, H. C., et al. (2022). Monitoring the temperature of a Mo/Si mirror with photoluminescence in extreme-ultraviolet lithography. ACS Applied Electronic Materials, 4(7), 3435–3439. https://doi.org/10.1021/acsaelm.2c00347

    Article  CAS  Google Scholar 

  20. Zhu, Z., Liu, L., Liu, Z., et al. (2017). Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Optics Letter, 42(15), 2948–2951. https://doi.org/10.1364/ol.42.002948

    Article  ADS  CAS  Google Scholar 

  21. Schkolnik, V., Leykauf, B., Hauth, M., et al. (2015). The effect of wavefront aberrations in atom interferometry. Applied Physics B, 120, 311–316. https://doi.org/10.1007/s00340-015-6138-5

    Article  CAS  Google Scholar 

  22. Karcher, R., Imanaliev, A., Merlet, S., & Santos, F. P. D. (2018). Improving the accuracy of atom interferometers with ultracold sources. New Journal of Physics, 20(11), 113041. https://doi.org/10.1088/1367-2630/aaf07d

    Article  ADS  CAS  Google Scholar 

  23. Fujishima, Y., Ishiyama, S., Isago, S., et al. (2013). Comprehensive thermal aberration and distortion control of lithographic lenses for accurate overlay. In Optical Microlithography XXVI., 8683, 493–499. https://doi.org/10.1117/12.2010908

    Article  Google Scholar 

  24. Hsu, M. Y., Chen, C. Y., Chang, S. T., et al. (2014). The refractive lens heat absorption from light source caused thermal aberration analysis. Novel Optical Systems Design and Optimization XVII, 9193, 148–154. https://doi.org/10.1117/12.2060770

    Article  Google Scholar 

  25. De Santi, C., Meneghini, M., Meneghesso, G., & Zanoni, E. (2016). Degradation of InGaN laser diodes caused by temperature- and current-driven diffusion processes. Microelectronics Reliability, 64, 623–626. https://doi.org/10.1016/j.microrel.2016.07.118

    Article  CAS  Google Scholar 

  26. Al-Marhaby, F. A., Al-Ghamdi, M. S., & Zekry, A. (2022). Effect of temperature on the electrical parameters of indium phosphide/aluminum gallium indium phosphide (InP/AlGaInP) quantum dot laser diode with different cavity lengths. Engineered Science, 18, 132–140. https://doi.org/10.30919/es8d647

    Article  CAS  Google Scholar 

  27. Zhang, J., Li, D., Chen, R., & Xiong, Q. (2013). Laser cooling of a semiconductor by 40 kelvin. Nature, 493(7433), 504–508. https://doi.org/10.1038/nature11721

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Bykov, D. S., Schmidt, O. A., Euser, T. G., & Russell, P. S. J. (2015). Flying particle sensors in hollow-core photonic crystal fibre. Nature Photonics, 9(7), 461–465. https://doi.org/10.1038/NPHOTON.2015.94

    Article  ADS  CAS  Google Scholar 

  29. Leahy, Z. N., & Magner, A. J. (2013). Athermal mounting of optics in metallic housings. In Optomechanical Engineering, 2013(8836), 194–201. https://doi.org/10.1117/12.2025266

    Article  Google Scholar 

  30. Briggs, J. A., Naik, G. V., Zhao, Y., et al. (2017). Temperature-dependent optical properties of titanium nitride. Applied physics Letters. https://doi.org/10.1063/14977840

    Article  Google Scholar 

  31. Ramos-López, D., Sánchez-Granero, M. A., Fernández-Martínez, M., & Martínez-Finkelshtein, A. (2016). Optimal sampling patterns for Zernike polynomials. Applied Mathematics and Computation, 274, 247–257. https://doi.org/10.1016/j.amc.2015.11.006

    Article  MathSciNet  Google Scholar 

  32. Svechnikov, M. V., Chkhalo, N. I., Toropov, M. N., & Salashchenko, N. N. (2015). Resolving capacity of the circular Zernike polynomials. Optics Express, 23(11), 14677–14694. https://doi.org/10.1364/OE.23.014677

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Lakshminarayanan, V., & Fleck, A. (2011). Zernike polynomials: A guide. Journal of Modern Optics, 58(7), 545–561. https://doi.org/10.1080/09500340.2011.554896

    Article  ADS  CAS  Google Scholar 

  34. Niu, K., & Tian, C. (2022). Zernike polynomials and their applications. Journal of Optics, 24, 123001. https://doi.org/10.1088/2040-8986/ac9e08

    Article  ADS  Google Scholar 

  35. Wang, J. Y., & Silva, D. E. (1980). Wave-front interpretation with Zernike polynomials. Applied Optics, 19(9), 1510–1518. https://doi.org/10.1364/JOSA.66.000207

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Mcalinden, C., Mccartney, M., & Moore, J. (2011). Mathematics of Zernike polynomials: A review. Clinical and Experimental Ophthalmology, 39(8), 820–827. https://doi.org/10.1111/j.1442-9071.2011.02562.x

    Article  PubMed  Google Scholar 

  37. Ruoff, J., & Totzeck, M. (2009). Orientation Zernike polynomials: A useful way to describe the polarization effects of optical imaging systems. Journal of Micro/Nanolithography, MEMS and MOEMS, 8(3), 031404. https://doi.org/10.1117/1.3173803

    Article  Google Scholar 

  38. Huang, J., Yao, L., Wu, S., & Wang, G. (2023). Wavefront Reconstruction of Shack-Hartmann with Under-Sampling of Sub-Apertures. Photonics, 10(1), 65. https://doi.org/10.3390/photonics10010065

    Article  Google Scholar 

  39. Pandey, A. K., Larrieu, T., Dovillaire, G., et al. (2022). Shack-hartmann wavefront sensing of ultrashort optical vortices. Sensors, 22(1), 132. https://doi.org/10.3390/s22010132

    Article  ADS  Google Scholar 

  40. Zhao, M., Zhao, W., Yang, K., et al. (2022). Shack-Hartmann wavefront sensing based on four-quadrant binary phase modulation. Photonics, 9(8), 575. https://doi.org/10.3390/photonics9080575

    Article  Google Scholar 

  41. Nikitin, A., Sheldakova, J., Kudryashov, A., Borsoni, G., Denisov, D., Karasik, V., & Sakharov, A. (2016). A device based on the Shack-Hartmann wave front sensor for testing wide aperture optics. In Photonic Instrumentation Engineering III, 9754, 117–125. https://doi.org/10.1117/12.2219282

    Article  Google Scholar 

  42. Dai, G.-M. (1994). Modified Hartmann-Shack Wavefront Sensing and Iterative Wavefront Reconstruction. Adaptive Optics in Astronomy, 2201, 562–573. https://doi.org/10.1117/12.176040

    Article  ADS  Google Scholar 

  43. Hwang, J. G., Kim, E. S., Kim, C., Huang, J. Y., & Kim, D. (2016). Effects of mirror distortion by thermal deformation in an interferometry beam size monitor system at PLS-II. Nuclear Instruments and Methods in Physics Research Section A, 833, 156–164. https://doi.org/10.1016/j.nima.2016.07.012

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joohan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Woo, S.C. & Kim, J. Effects of Temperature on Optical Aberrations in Beam Delivery Components. Int. J. Precis. Eng. Manuf. 25, 527–538 (2024). https://doi.org/10.1007/s12541-023-00934-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-023-00934-0

Keywords

Navigation