Skip to main content
Log in

Research Progress of Hydrostatic Bearing and Hydrostatic-Hydrodynamic Hybrid Bearing in High-End Computer Numerical Control Machine Equipment

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Hydrostatic bearing has the advantages of wide speed range, large bearing capacity, high precision and stability. Hydrostatic-hydrodynamic hybrid bearing can make up for the lack of stiffness of hydrostatic bearing and prevent tribological failure under the condition of high speed and heavy load. Therefore, hydrostatic bearing and hydrostatic-hydrodynamic hybrid bearing have become important bearing parts of high-end computer numerical control (CNC) machine equipment. The research on hydrostatic and hydrostatic-hydrodynamic open a new way for precision improvement of high-end CNC machine equipment. This paper reviews research progress of hydrostatic linear guideway, hydrostatic rest and ram, hydrostatic thrust bearing, hydrostatic-hydrodynamic thrust bearing and hydrostatic-hydrodynamic spindle of high-end CNC machine equipment, and discusses the influence of structure and working parameters on lubrication performance, accuracy and stability of bearing parts. Finally, the future research direction in hydrostatic bearing and hydrostatic-hydrodynamic hybrid bearing are suggested. This review provides a theoretical basis for design and development of high-end CNC machine equipment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Charki, A., Diop, K., Champmartin, S., & Ambari, A. (2013). Reliability of a hydrostatic bearing. Journal of Tribology, 136(1), 249–256.

    Google Scholar 

  2. Manring, N. D., Johnson, R. E., & Cherukuri, H. P. (2002). The impact of linear deformations on stationary hydrostatic thrust bearings. Journal of Tribology, 124(4), 874–877.

    Article  Google Scholar 

  3. Zha, J., Xue, F., & Chen, Y. (2017). Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine. International Journal of Machine Tools and Manufacture, 112, 1–6.

    Article  Google Scholar 

  4. Ding, Z. Q. (1986). Hydrostatic bearing design. Shanghai Scientific & Technical Publishers.

    Google Scholar 

  5. Yu, X. D. (2019). Lubrication technology of thrust bearing under high speed and heavy load. Science Press.

    Google Scholar 

  6. Pang, Z. C. (1982). A theoretical research on the dynamic stability of hydrostatic bearing. Journal of Harbin Institute of Technology, 3, 86–98.

    Google Scholar 

  7. Shun, Z. L., Yan, Y. T., & Tian, W. L. (2015). Mechanical design (2nd ed.). Science Press.

    Google Scholar 

  8. Dong, W., Li, B., Guo, W., & Zhou, Q. (2019). Deformation analysis of hydrostatic guideways based on the cantilever plate bending calculation method. Tribology Transactions, 62(6), 1142–1154.

    Article  Google Scholar 

  9. Zhu, J. B., & Jiang, S. Y. (2020). Stiffness modelling of cylindrical hydrostatic guideways. Journal of Physics: Conference Series, 1650(22), 22–26.

    Google Scholar 

  10. Xue, F., & Zhao, W. H. (2010). Influencing factors on error averaging effect of hydrostatic guideway. Journal of Xi’an Jiaotong University, 44(11), 33–36.

    Google Scholar 

  11. Li, W. F., Du, Y. T., & Li, M. (2012). The performance simulation study of the hydrostatic guideway of precision CNC lathe. Machine Tool & Hydraulics, 40(5), 14–17.

    Google Scholar 

  12. Li, S., Song, J. C., Wang, C. Z., Ren, G.A. (2014). Structural design and research on oil chamber flow field for closed hydrostatic guideway of precision CNC machine. Machine Tool & Hydraulics, 42(15), 85–87.

    Google Scholar 

  13. Bouzidane, A., & Thomas, M. (2007). Equivalent stiffness and damping investigation of a hydrostatic journal bearing. Tribology Transactions, 50, 257–267.

    Article  Google Scholar 

  14. Bouzidane, A., Thomas, M., & Lakis, A. A. (2008). Nonlinear dynamic behavior of a rigid rotor supported by hydrostatic squeeze film dampers. Journal of Tribology, 130(4), 041102.

    Article  Google Scholar 

  15. Bouzidane, A., & Thomas, M. (2013). Nonlinear dynamic analysis of a rigid rotor supported by a three-pad hydrostatic squeeze film dampers. Tribology Transactions, 56, 717–727.

    Article  Google Scholar 

  16. Zhang, F. J. (2015). Research on design and key technology of the hydrostatic guide way experiment platform. Donghua University.

    Google Scholar 

  17. Zhang, L. (2011). Study on the self-adaptive oil supply system of constant pressure of opened hydrostatic slider. Donghua University.

    Google Scholar 

  18. Das, N. C. (1999). A study of optimum load capacity of slider bearings lubricated with power law fluids. Tribology International, 32, 435–441.

    Article  Google Scholar 

  19. Wang, Z. W., Liu, Y., & Wang, F. (2017). Rapid calculation method for estimating static and dynamic performances of closed hydrostatic guideways. Industrial Lubrication and Tribology, 69(6), 1040–1048.

    Article  Google Scholar 

  20. Liu, Y. L. (2010). Analysis of static and dynamic characteristics of ultra-precision hydrostatic guideway and identification of model parameters. Harbin Institute of Technology.

    Google Scholar 

  21. Liu, J. Y. (2020). Research on static and dynamic characteristics of hydrostatic guide rail. Xi’an University of Technology.

    Google Scholar 

  22. Wu, P. F., Gao, F., & Li, Y. (2020). Hydrostatic guide parameter identification in junction space based on frequency response function. Machine Tool & Hydraulics, 48(16), 5–9.

    Google Scholar 

  23. Zhao, J. H., Gao, D. R., & Zhang, Z. C. (2012). Indeterminate mechanics model of bearing capacity of constant pressure oil pockets in hydrostatic slide. Journal of Mechanical Engineering, 48(22), 168–176.

    Article  Google Scholar 

  24. Zhao, J. H., & Gao, D. R. (2013). Influence of oil film thickness on characteristics of closed type hydrostatic slide. China Mechanical Engineering, 24(11), 1421–1430.

    Google Scholar 

  25. Zhao, J. H., & Gao, D. R. (2013). Dynamic characteristics analysis of liquid hydrostatic slide based on flow control valve. China Mechanical Engineering, 24(4), 444–451.

    MathSciNet  Google Scholar 

  26. Gao, D. R., Wei, Y., & Wang, K. (2014). Influence of design parameters of cylindrical hydrostatic slide on its’ performance. Journal of Mechanical Engineering, 50(24), 186–190.

    Article  Google Scholar 

  27. Wang, Z. W., Zha, J., Chen, Y. L., & Zhao, W. H. (2014). Influencing of fluid-structure interactions on static and dynamic characteristics of oil hydrostatic guideways. Journal of Mechanical Engineering, 50(9), 148–152.

    Article  Google Scholar 

  28. Lai, Z., Qiao, Z., Zhang, P., Wang, B., & Wu, Y. (2016). The effect of structural coefficient on stiffness and deformation of hydrostatic guideway. In International symposium on advanced optical manufacturing and testing technologies (p. 9685).

  29. Zhang, Z. C. (2012). Theoretical and simulation analysis of static and dynamic characteristics of hydrostatic guideway with PM controller. Yanshan University.

    Google Scholar 

  30. Shi, C., Wang, Z., Peng, Y., Li, C., & Kong, L. (2020). Influence of PM controller parameters on motion accuracy of hydrostatic guideways. Journal of Mechanical Engineering, 56(1), 157–165.

    Article  Google Scholar 

  31. Du, X., He, Y. Q., & Xin, X. W. (2021). Application of close-type hydrostatic guide in precision surface grinding machine. Precise. Manufacturing & Automation, 2, 62–64.

    Google Scholar 

  32. Zhang, X. Y. (2011). Amended calculation and application of hydrostatic system of constant current closed hydrostatic guideway. Machine Tool & Hydraulics, 39(19), 56–58.

    Google Scholar 

  33. Guo, A., Li, M. Y., Wang, F. L., Ma, X. (2020). Analysis of the support characteristics of the oil film of ultra-precision hydrostatic guideway. Modular Machine Tool & Automatic Manufacturing Technique, 9, 57–66.

    Google Scholar 

  34. Gao, D. R., Zhao, J. H., & Zhang, Z. C. (2013). Analysis of number of oil-pockets in one slid surface of liquid hydrostatic slide. Engineering Mechanics, 30(4), 423–428.

    Google Scholar 

  35. Liu, Q. (2016). Research on flow simulation and mechanical properties of hydrostatic guide-way. Xi’an University of Technology.

    Google Scholar 

  36. Wang, Y. L. (2020). Research on motion linearity model and regulation technology of closed hydrostatic guide. Xi’an University of Technology.

    Google Scholar 

  37. Chen, G. L., Yang, H., Liu, Y. H., Yin, C.Z., Jiang, Z., Li, Z.X. (2020). Series composite throttling closed hydrostatic guideway. Sichuan Province: CN112548595A, 2021-08-10.

  38. Li, X. Z., Qiu, Y. F., Su, X., Wei, W., Li, J.S., Yang, H. (2020). Hydrostatic guideway system with active controllable oil film thickness. Sichuan Province: CN112077616B, 2021-08-10.

  39. Ma, H., & Ran, C. C. (2021). Optimal design of hydrostatic guide rail based on Taguchi method and genetic algorithm. Machine Tool & Hydraulics, 49(2), 93–98.

    Google Scholar 

  40. Liu, X., Chen, Y., Zha, J., & Zhang, P. (2021). Research on improved hydrostatic guideway base thermal characteristics by flattening temperature distribution. International Journal of Advanced Manufacturing Technology, 15(5), 1735–1744.

    Article  Google Scholar 

  41. Chen, Y. Q., Wu, Y. J., Zeng, W. P., Liu, Y.L., Gao, Y.Y., Gao, P., Zhou, W., Wang, L.Y., Guo, L. (2021). Sliding assembly of ultra-precision hydrostatic guideway. Hunan Province: CN112901659A, 2022-04-01.

  42. Chen, Z., Zheng, L. G., Liu, H. L. (2021). Oil film hydrostatic guideway device. Jiangsu Province: CN213795225U, 2021-07-27.

  43. Wu, F. X., Xu, Y. L., Deng, J. H., Deng, G.Y. (2021). Anti-torsion hydrostatic guideway of CNC machine tool. Beijing: CN113001198A, 2021-06-22.

  44. Cha, J., Li, C. (2021). Method and system for evaluating motion accuracy of four-oil pad hydrostatic guideway. Jiangsu Province: CN113108750A, 2021-07-13.

  45. Xiang, J. W., Wang, R., & Xu, J. Y. (2009). Structural finite element analysis of spindle ram for large-scale milling planer. Manufacturing Technology & Machine Tool, 9, 47–49.

    Google Scholar 

  46. Yang, M. Y., Xu, K. P., Wang, J. H., Peng, L.F. (2011). Research on deformation compensation for square ram of TK6926 CNC floor type boring & milling machine based on FEM technology. Machine Tool & Hydraulics, 39(4), 39–42.

    Google Scholar 

  47. Qiu, Z. X., Gao, Z. L., Ren, D., Cui, D.Y. (2020). Finite element analysis and optimization design for ram of bridge gantry milling machine. Machinery Design & Manufacture, 9, 162–166.

    Google Scholar 

  48. Lu, J., Wei, D. Q., Wang, R., Feng, J.G. (2016). Research on deformation law for the ram based on thermal-structural coupling. Modular Machine Tool & Automatic Manufacturing Technique, 9, 20–23.

    Google Scholar 

  49. Li, B. B., Liu, X., Li, S. P., Peng, L.F. (2017). Ram comprehensive thermal compensation study. Machine Tool & Hydraulics, 45(13), 68–72.

    Google Scholar 

  50. Rahman, M., Heikkala, J., & Lappalainen, K. (2000). Modeling measurement and error compensation of multi-axis machine tools. International Journal of Machine Tools and Manufacture, 40(10), 1535–1546.

    Article  Google Scholar 

  51. Gu, D. Q., Zheng, Y. T., & Gu, W. H. (2015). Theoretical analysis and experiment of ram gap compensation’s characteristics. China Mechanical Engineering, 26(3), 293–298.

    Google Scholar 

  52. Gao, Z. L., Qiu, Z. X., Ren, D., Cui, D.Y. (2019). Multi-objective preference design for ram of gantry milling machine based on orthogonal experimental method. Modern Manufacturing Engineering, 5, 97–103.

    Google Scholar 

  53. Liu, W. Z. (2008). Finite element analysis and deformation compensation technology of NC horizontal milling machine. Modern Manufacturing Engineering, 30(1), 56–58.

    Google Scholar 

  54. Wu, F. H., & Zhao, F. B. (2012). A compensation method for deflection of ram with combined pull and push rods. China Mechanical Engineering, 23(22), 2667–2670.

    Google Scholar 

  55. Yu, J. W., Gui, L., Li, X. M., & Zhang, H. (2015). FEM analysis and compensation of the ram deformation of CNC floor type boring milling machine tool. Journal of Hunan University (Natural Sciences), 42(10), 43–47.

    Google Scholar 

  56. Yu, X. D., Gao, W. C., Wu, G. P., Zhou, W., Bi, H., Wang, Y., Wang, J., & Jiao, J. (2021). Research status of hydrostatic bearing technology in machine tool. Recent Patents on Mechanical Engineering, 14, 1–9.

    Article  Google Scholar 

  57. Yang, J. M. (2014). The constructural research and design of ram in the heavy-duty vertical lathe. Yanshan University.

    Google Scholar 

  58. Cheng, H. K. (2018). Study on the lubrication performance of the vertical slide guide of the hydrostatic pillow. Harbin University of Science and Technology.

    Google Scholar 

  59. Wang, Y. M., Liu, Z. F., Cai, L. G., & Cheng, Q. (2018). Modeling and optimization of nonlinear support stiffness of hydrostatic ram under the impact of cutting force. Industrial Lubrication and Tribology, 70(2), 316–324.

    Article  Google Scholar 

  60. Wang, Y. M., Liu, Z. F., Cheng, Q., Zhao, Y., Wang, Y., & Cai, L. (2019). Analysis and optimization of nonlinear carrying performance of hydrostatic ram based on finite difference method and Runge–Kutta method. Advances in Mechanical Engineering, 11(6), 1–12.

    Article  Google Scholar 

  61. Zhang, Y. Q., Hou, J. J., Gao, W. C., Zhao, Z. W., Zhou, D. F., & Cheng, H. K. (2020). Prediction model of the clearance oil film for static vertical rail considering the ram deformation. Proceedings of the Institution of Mechanical, 234(1), 42–49.

    Article  Google Scholar 

  62. Gao, W. C. (2021). Research on bearing performance of hydrostatic ram of vertical lathe under high speed and heavy load conditions. Harbin University of Science and Technology.

    Google Scholar 

  63. Zhou, Z. D. (2013). Research on spindle ram components error compensation of floor milling-boring machining center. Soochow University.

    Google Scholar 

  64. Wu, F. H., Qiao, L. J., & Xu, Y. L. (2012). Deformation compensation of ram components of super-heavy-duty CNC floor type boring and milling machine. Chinese Journal of Aeronautics, 25, 269–275.

    Article  Google Scholar 

  65. Zheng, Y. T. (2013). Research on hydraulic compensating system for ram’s slide guide of NC machine. Zhejiang University.

    Google Scholar 

  66. Hua, X. L., Guo, X. H., & Pan, X. B. (2014). Analysis and research of ram hydrostatic guideway for large NC floor type boring and milling machine. Machine Tool & Hydraulics, 42(11), 59–61.

    Google Scholar 

  67. Hua, X. L. (2014). The analysis and optimization of ram of large floor boring and milling machine. Soochow University.

    Google Scholar 

  68. Gao, L. (2014). The key technologies of GTM500200 lathing and milling center ram design. Dalian University of Technology.

    Google Scholar 

  69. Wang, C. R., & Chen, Z. L. (2017). Experimental research on ram hydrostatic guideway of TH6918 machining center. Coal Mine Machinery, 38(11), 34–36.

    Google Scholar 

  70. Dong, T. J. (2017). CNC floor type boring and milling machine analysis of ram’s deformation and its compensation design. Shanghai Jiao Tong University.

    Google Scholar 

  71. Yu, P., Jin, H., & Tong, K. (2017). Design and manufacturing of hydrostatic rolling combination guideway of vertical turning and milling center. Machine Tool & Hydraulics, 45(16), 11–13.

    Google Scholar 

  72. Ding, Z. Q. (2014). Development history and present situation of hydrostatic, hydrostatic and hydrodynamic technology in machine tools in China. World Manufacturing Engineering & Market, 2, 73–76.

    Google Scholar 

  73. Chen, B. X. (1991). Fluid lubrication theory and its application. The Machinery Publishing.

    Google Scholar 

  74. Chen, Y. S. (1980). Principle and design of hydrostatic bearing. National Defense Industry Press.

    Google Scholar 

  75. Pang, Z. C. (1981). Hydrostatic and aerostatic technology. Heilongjiang People’s Publishing House.

    Google Scholar 

  76. Li, L. Q., Ma, L., & Wang, M. (2014). Heavy loading and high speed table design. Manufacturing Technology & Machine Tool, 5, 122–124.

    Google Scholar 

  77. Tian, Z. X. (2018). Research on the characteristics and their affecting factors of the hydrostatic thrust bearing. Huazhong University of Science and Technology.

    Google Scholar 

  78. Yu, X. D., Meng, X. L., Li, H. H., Tan, L., Wang, Z., Zhou, Q., Zhuang, J., & Yang, L. (2013). Pressure field of multi-pad annular recess hydrostatic thrust bearing. Journal of Donghua University, 30(3), 254–257.

    Google Scholar 

  79. Singh, U. P., Gupta, R. S., & Kapur, V. K. (2011). On the steady performance of hydrostatic thrust bearing: Rabinowitsch fluid model. Tribology Transactions, 54, 723–729.

    Article  Google Scholar 

  80. Singh, U. P., Gupta, R. S., & Kapur, V. K. (2013). On the application of Rabinowitsch fluid model on an annular ring hydrostatic thrust bearing. Tribology International, 58, 65–70.

    Article  Google Scholar 

  81. Tian, Z. X., Cao, H. Y., & Huang, Y. (2019). Static characteristics of hydrostatic thrust bearing considering the inertia effect on the region of supply hole. Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology, 233(1), 188–193.

    Article  Google Scholar 

  82. Yu, X. D., Qiu, Z. X., Li, H. H., & Tan, L. (2013). Lubrication performance and velocity characteristics of a multi-oil-pad hydrostatic thrust bearing with a sector-shaped cavity. Journal of Engineering for Thermal Energy and Power, 28(3), 296–300.

    Google Scholar 

  83. Wang, S. L., Xiong, W. L., Meng, S. G., Gui, L., Xue, J.Y. (2015). Analytical calculation and experimental research on the bearing capacity of fan-shaped hydrostatic thrust bearing supplied with constant oil flow. Journal of Mechanical Strength, 37(5), 828–832.

    Google Scholar 

  84. Yu, X. D., Sun, D. D., Wu, X. G., Sui, J. L., Liu, D., & Fu, X. (2016). High speed and heavy load characteristic on oil film thickness of annular recess multi-pad hydrostatic thrust bearing. Journal of Propulsion Technology, 37(7), 1350–1355.

    Google Scholar 

  85. Zhang, Y. Q., Quan, Z., Feng, Y. N., Kong, P.R., Sun, J.C. (2018). Dynamic analysis of internal flow field of double-rectangular cavity hydrostatic thrust bearing. Journal of Mechanical Transmission, 42(12), 109–113.

    Google Scholar 

  86. Rehman, W. U., Khan, W., Ullah, N., Chowdhury, M. S., Techato, K., & Haneef, M. (2021). Nonlinear control of hydrostatic thrust bearing using multivariable optimization. Mathematics, 9(8), 1–16.

    Article  Google Scholar 

  87. Liu, G. D., Shao, J. P., Li, T. Y., Lin, Y.L., Hu, Y.X. (2021). Lubrication performance comparison of hydrostatic thrust bearing with different offset distances. Journal of Harbin University of Science and Technology, 26(3), 32–37.

    Google Scholar 

  88. Yu, X. D., Li, T., Meng, X. L., Li, H. H., Wang, Z. Q., Zhou, Q. H., & Yang, C. Q. (2013). Influence of rotational speed on oil film temperature of multi-sector recess hydrostatic thrust bearing. Journal of the Chinese Society of Mechanical Engineers, 34(5), 371–378.

    Google Scholar 

  89. Srinivasan, V. (2013). Analysis of static and dynamic load on hydrostatic bearing with variable viscosity and pressure. Indian Journal of Science and Technology, 6, 4777–4782.

    Google Scholar 

  90. Yu, X. D., Pan, Z., He, Y., Liu, S.H., Wei, Y.X. (2015). Simulation on flow patterns of gap oil film in heavy Type hydrostatic thrust bearing. Journal of Harbin University of Science and Technology, 20(6), 42–46.

    Google Scholar 

  91. Zhang, Y. Q., Feng, Y. N., Kong, P. R., Yu, X. D., & Kong, X. B. (2019). Temperature field and experiment of hydrostatic bearing oil film based on hot oil carrying. Journal of Jilin University (Engineering and Technology Edition), 49(4), 1203–1211.

    Google Scholar 

  92. Zhang, Y. Q., Feng, Y. N., Luo, Y., Yu, X.D. (2022). Hot oil carrying and oil film temperature rise characteristics of hydrostatic thrust bearings under various operating conditions. Journal of Propulsion Technology, 43(5), 1–9.

  93. Singh, U. P., Gupta, R. S., & Kapur, V. K. (2012). On the steady performance of annular hydrostatic thrust bearing: Rabinowitsch fluid model. Journal of Tribology, 134, 044502.

    Article  Google Scholar 

  94. Zhang, Y. Q., Fan, L. G., Li, R., Dai, C. X., & Yu, X. D. (2013). Simulation and experimental analysis of supporting characteristics of multiple oil pad hydrostatic bearing disk. Journal of Hydrodynamics, 25(2), 236–241.

    Article  Google Scholar 

  95. Chen, Y. (2015). Research on influence of lubrication oil physical property on performance of hydrostatic supporting oil-film. Harbin University of Science and Technology.

    Google Scholar 

  96. Zhang, Y. Q., Zhang, Z.Q., Feng, Y. N., Kong, P. R., Sun, J.C., Kong, X.B. (2018). Lubrication characteristics of double rectangular cavity hydrostatic bearing at high speed. Tribology, 38(5), 609–618.

    Google Scholar 

  97. Zhang, Y. Q., Ni, S. Q., Zhang, Z. Q., Kong, P. R., Feng, Y. N., & Kong, X. B. (2019). Dynamic lubrication characteristics of oil film with variable viscosity hydrostatic sliding bearings at high speed. Journal of Mechanical Engineering, 55(22), 108–117.

    Google Scholar 

  98. Yu, X. D., Geng, L., Zheng, X. J., Wang, Z.X., Zhang, Y.Q. (2017). Oil film stiffness characteristics of constant fluid hydrostatic thrust bearing with annular cavity multi-pads. Journal of Harbin Engineering University, 38(12), 1951–19563.

    Google Scholar 

  99. Shen, F., Chen, C. L., & Liu, Z. M. (2014). Effect of pocket geometry on the performance of a circular thrust pad hydrostatic bearing in machine tools. Tribology Transactions, 57, 700–714.

    Article  Google Scholar 

  100. Kumar, V., & Sharma, S. C. (2017). Combined influence of couple stress lubricant, recess geometry and method of compensation on the performance of hydrostatic circular thrust pad bearing. Proceedings of the Institution of Mechanical Engineers, 231(6), 716–733.

    Google Scholar 

  101. Chow, C. Y. (1975). A non-central feeding hydrostatic thrust bearing. Journal of Fluid Mechanics, 72(1), 113–120.

    Article  MATH  Google Scholar 

  102. Sharma, S. C., Jain, S. C., & Bharuka, D. K. (2002). Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing. Tribology International, 35(6), 347–356.

    Article  Google Scholar 

  103. Heinrichson, N., Santos, I. F., & Fuerst, A. (2007). The influence of injection pockets on the performance of tilting-pad thrust bearings-part I: Theory. Journal of Tribology, 129(4), 895–903.

    Article  Google Scholar 

  104. Heinrichson, N., Fuerst, A., & Santos, I. F. (2007). The influence of injection pockets on the performance of tilting-pad thrust bearings-part II: Comparison between theory and experiment. Journal of Tribology, 129(4), 904–914.

    Article  Google Scholar 

  105. Yadav, S. K., & Sharma, S. C. (2016). Performance of hydrostatic textured thrust bearing with supply holes operating with non-Newtonian lubricant. Tribology Transactions, 59(3), 408–420.

    Article  Google Scholar 

  106. Yadav, S. K., & Sharma, S. C. (2016). Finite element analysis of tilted thrust pad bearings of various recesses shapes considering thrust pad flexibility. Journal of Engineering Tribology, 230(7), 872–893.

    Google Scholar 

  107. Shao, J. P., Zhang, Y. Q., & Li, P. C. (2007). Static flow simulation of hydrostatic bearing ellipse and sector curve based on FLUENT. Lubrication Engineering, 1, 93–95.

    Google Scholar 

  108. Zhang, Y. Q. (2007). Research of flow and temperature fields of hydrostatic bearing based on fluent. Harbin University of Science and Technology.

    Google Scholar 

  109. Shao, J. P., Zhang, Y. Q., Yu, X. D., Qin, B., & Wang, Z. W. (2009). Numerical simulation analysis of sector and circular oil recess temperature field of heavy hydrostatic. Journal of Hydrodynamics, 24(1), 120–124.

    Google Scholar 

  110. Shao, J. P., Dai, C. X., Zhang, Y. Q., Yu, X. D., Xu, X. Q., & Wang, Y. F. (2011). The effect of oil cavity depth on temperature field in heavy hydrostatic thrust bearing. Journal of Hydrodynamics, 23(5), 676–680.

    Article  Google Scholar 

  111. Wang, Y. Z., Jiang, D., Yin, Z. W., Gao, G. Y., & Zhang, X. L. (2015). Load capacity analysis of water lubricated hydrostatic thrust bearing based on CFD. Journal of Donghua University (Natural Sciences), 41(4), 428–432.

    Google Scholar 

  112. Li, X. B., Huang, Y., Li, M., Cheng, T. (2016). Influences on temperature field of a vertical lathe hydrostatic thrust bearing by structural dimension of oil cushion. Machine Tool & Hydraulics, 44(21), 128–131.

    Google Scholar 

  113. Sun, D. D. (2017). Optimization research on lubrication performance of the hydrostatic thrust bearing with double rectangular cavity. Harbin University of Science and Technology.

    Google Scholar 

  114. Xiao, J. F., Shen, F., Liu, Z.M. (2017). Numerical simulation study on flow characteristics of a new multi-annular oil chamber. 23rd Annual Meeting of Beijing Mechanics Society, 51-52.

  115. Guo, Y. P., Zhang, Y. Q., Deng, L. Y., Zhang, H.X. (2018). Comparative analysis of temperature rising characteristics of hydrostatic bearing oil film with different cavity structures. Harbin University of Science and Technology, 23(4), 55–58.

    Google Scholar 

  116. Shao, J. P., Liu, G. D., Yu, X. D., Zhang, Y. Q., Meng, X. L., & Jiang, H. (2018). Effect of recess depth on lubrication performance of annular recess hydrostatic thrust bearing by constant rate flow. Industrial Lubrication and Tribology, 70(1), 68–75.

    Article  Google Scholar 

  117. Yu, M. B., Yu, X. D., Zheng, X. H., Qu, H., Yuan, T., & Li, D. (2019). Influence of recess shape on comprehensive lubrication performance of high speed and heavy load hydrostatic thrust bearing. Industrial Lubrication and Tribology, 71(2), 301–308.

    Article  Google Scholar 

  118. Wang, Y. (2021). Research on cavity effect of high speed and heavy load hydrostatic thrust bearing. Harbin University of Science and Technology.

    Google Scholar 

  119. Tian, Z. X., Guo, M. H., & Cao, H. Y. (2022). Study on influencing factors of dynamic characteristics of annular recess hydrostatic thrust bearing. Chinese Journal of Engineering Design, 29(4), 456–464.

    Google Scholar 

  120. Markin, D., Mc Carthy, D. M. C., & Glavatskih, S. B. (2003). A FEM approach to simulation of tilting-pad thrust bearing assemblies. Tribology International, 36, 807–814.

    Article  Google Scholar 

  121. Santos, I., & Kristian, B. (2007). Geometry optimization of hybrid tilting-pad journal bearings. Proceeding of the ASME/STLE International Joint Tribology Conference, 2007, 319–321.

    Google Scholar 

  122. Shao, J. P., Yang, X. D., Zhou, L. M., Li, H., Zhang, Y., & Jiang, H. (2009). Numerical simulation of integrated deformation of heavy hydrostatic thrust bearing and experimental research. International Conference on Intelligent Human-Machine Systems and Cybernetics, 2009, 45–48.

    Google Scholar 

  123. Yang, X. D. (2010). Research on temperature field and deformation field of large-scale constant-current hydrostatic bearing. Harbin University of Science and Technology.

    Google Scholar 

  124. Yu, X. D., Fu, X., Liu, D., Zhou, Q. H., Li, H. H., & Wang, Z. Q. (2015). Thermal deformation of annular recess multi-pad hydrostatic thrust bearing. Journal of Jilin University (Engineering and Technology Edition), 45(2), 460–465.

    Google Scholar 

  125. Ettles, C. M., López, G. D., & Borgna, H. (2016). Optmized design of a large reversible thrust bearing. Journal of Tribology, 138(4), 1701–1709.

    Article  Google Scholar 

  126. Yu, X. D., Wu, X. G., Sui, J. L., Sun, D.D., Zhang, Y.Q. (2016). Numerical and experimental study on temperature field of hydrostatic bearing friction pairs. Journal of Propulsion Technology, 37(10), 1946–1951.

    Google Scholar 

  127. Yu, X. D., Liu, C., Zuo, X., & Zh, Y. Q. (2018). Fluid-thermal-mechanical coupled solution and experiment on deformation of bearing friction pairs in hydrostatic bearing. Engineering Mechanics, 35(5), 231–238.

    Google Scholar 

  128. Yu, X. D., Zuo, X., Liu, C., Zheng, X., Qu, H., & Yuan, T. (2018). Oil film shape prediction of hydrostatic thrust bearing under the condition of high speed and heavy load. Industrial Lubrication and Tribology, 70(7), 1243–1250.

    Article  Google Scholar 

  129. Zheng, X. J. (2018). Study on the thermal characteristics of the static pressure rotary table in extreme working conditions. Harbin University of Science and Technology.

    Google Scholar 

  130. Yu, X. D., Gao, W. C., & Wu, G. P. (2020). Thermal performance characterization of hydrostatic thrust bearing under high speed and heavy load working conditions. Journal of South China University of Technology (Natural Science Edition), 48(9), 79–85.

    Google Scholar 

  131. Li, X. B., Li, W. X., Chen, X. Y., Li, M., Chen, H., & Yue, X. (2018). Design and performance analysis on heat pipe hydrostatic thrust bearings based on rectangular oil pad. Industrial Lubrication and Tribology, 70(7), 1251–1257.

    Article  Google Scholar 

  132. Geng, L. (2018). Dynamic and static characteristics research of hydrostatic thrust bearing under extreme conditions. Harbin University of Science and Technology.

    Google Scholar 

  133. Yu, X. D., Yuan, T. F., Li, D. G., Qu, H., & Zheng, X. (2018). Dynamic characteristics of hydrostatic thrust bearing with double rectangular cavity under extreme working condition. Chinese Journal of Theoretical and Applied Mechanics, 50(4), 899–907.

    Google Scholar 

  134. Yu, M. B., Yu, X. D., Zheng, X. H., & Jiang, H. (2019). Thermal-fluid-solid coupling deformation of hydrostatic thrust bearing friction pairs. Industrial Lubrication and Tribology, 71(3), 467–473.

    Article  Google Scholar 

  135. Brecher, C., Baum, C., Winterschladen, M., & Wnnzel, C. (2007). Simulation of dynamic effects on hydrostatic bearings and membrane restrictors. Production Engineering, 1(4), 415–420.

    Article  Google Scholar 

  136. Stansfield, F. M. (2003). Hydrostatic bearings for machine tools and similar applications. The Machinery Publishing.

    Google Scholar 

  137. Zhang, B. Z. (2003). Numerical method of fluid mechanics. The Machinery Publishing.

    Google Scholar 

  138. Osman, T. A., Safar, Z. S., & Mokhtar, M. O. A. (1991). Design of annular recess hydrostatic thrust bearing under dynamic loading. Tribology International, 24(3), 137–141.

    Article  Google Scholar 

  139. Sui, J. L. (2017). Research on the tribology behavior of inclinable hydrostatic thrust bearing with self-adaption oil pad. Harbin University of Science and Technology.

    Google Scholar 

  140. Wang, Z. X. (2018). Study on oil film stiffness performance of high speed and heavy load hydrodynamic and hydrostatic mixed lubrication thrust bearing. Harbin University of Science and Technology.

    Google Scholar 

  141. Yu, X. D., Liu, C., & Zuo, X. (2018). Hydrodynamic compensation of carrying capacity in hydrostatic thrust bearing under extreme working condition. Journal of Propulsion Technology, 39(5), 1085–1091.

    Google Scholar 

  142. Zuo, X. (2019). Research on comprehensive lubrication performance of static and dynamic pressure hybrid static pressure bearing. Harbin University of Science and Technology.

    Google Scholar 

  143. Yuan, T. F. (2020). Study on morphology characteristics of oil film in static and dynamic pressure mixed support. Harbin University of Science and Technology.

    Google Scholar 

  144. Qu, H. (2020). Temperature characteristics and deformation characterization of adaptive hydrostatic thrust bearing. Harbin University of Science and Technology.

    Google Scholar 

  145. Yu, X. D., Zhan, S. W., Han, F., Wang, F., Sun, F., Huang, D., & Jiao, J. (2021). Deformation of friction pairs of static and dynamic pressure hybrid bearing with tilting oil pad. Engineering Mechanics, 38(1), 241–248.

    Google Scholar 

  146. Zhou, W. K. (2021). Research on static and dynamic characteristics of new type oil cushion tilting hydrostatic thrust bearing. Harbin University of Science and Technology.

    Google Scholar 

  147. Razzaque, M. M., & Hossain, M. Z. (2015). Effects of grooving in a hydrostatic circular step thrust bearing with porous facing. Journal of Tribology, 137(3), 031703-1–031703-10.

    Google Scholar 

  148. Wu, G. P. (2021). Research on the influence of surface microstructure on friction characteristics of high-speed and heavyload hydrostatic support. Harbin University of Science and Technology.

    Google Scholar 

  149. Li, J., Ma, J. K., Ding, L. W., Liu, Z.Y. (2019). Numerically simulating pressure field of oil film in a new hybrid rotary table. Mechanical Science and Technology for Aerospace Engineering, 38(12), 1812–1818.

    Google Scholar 

  150. Ding, L. W. (2018). Numerical simulation of flow field and temperature field of the new type hybrid rotary table based on CFD. Shandong University.

    Google Scholar 

  151. Liu, Y. P., Ma, J. K., Chen, S. J., Lu, C.H. (2017). The analysis of new-type hybrid rotary table’s carrying-capacity characteristics and structure improvement. Modular Machine Tool & Automatic Manufacturing Technique, 10, 6–11.

    Google Scholar 

  152. Nie, Y. L., Ma, J. K., Chen, S. J., Tian, Z.H. (2019). Study on oil film force and dynamic characteristics of a new type hybrid rotary table. Lubrication Engineering, 44(11), 73–78.

    Google Scholar 

  153. Nie, Y. L. (2019). Study on axial static-dynamic characteristics and circumferential motion stability of the new type hybrid rotary table. Shandong University.

    Google Scholar 

  154. Tian, Z. H., Ma, J. K., Lu, C. H., Chen, S.J., Nie, Y.L. (2019). Parameter optimization of the spiral groove on a novel hybrid rotary table. Modular Machine Tool & Automatic Manufacturing Technique, 5, 9–13.

    Google Scholar 

  155. Liu, Z. Y., Ma, J. K., & Li, J. (2020). Oil film temperature rise characteristics of a new type hybrid differential rotary table without negative pressure. Lubrication Engineering, 45(4), 45–50.

    Google Scholar 

  156. Liu, Z. Y. (2020). Study on the shunt characteristics a new type hybrid rotary table. Shandong University.

    Google Scholar 

  157. Zhu, X. S., Xue, B. Y., & Bei, J. Y. (1990). Essence of rotational error motion and its test and calculating method. Journal of Shanghai Jiaotong University, 4, 52–60.

    Google Scholar 

  158. Xiong, W. L., Yang, X. B., Lang, L., & Yuan, J. (2009). Review on key technology of hydrodynamic and hydrostatic high-frequency motor spindles. Journal of Mechanical Engineering, 45(9), 1–18.

    Article  Google Scholar 

  159. Chen, C. H., Kang, Y., Huang, Y. N., Chu, C. H., & Teng, J. T. (2002). The restrictive effects of capillary compensation on the stability of the Jeffcott rotor-hybrid bearing system. Tribology International, 35(12), 849–855.

    Article  Google Scholar 

  160. Chen, C. H., Kang, Y., Chang, Y. P., Lee, H. H., & Shen, P. C. (2005). Influences of recess depth on the stability of the Jeffcott rotor supported by hybrid bearings with orifice restrictors. Industrial Lubrication and Tribology, 57(1), 41–51.

    Article  Google Scholar 

  161. Phalle, V. M., Sharma, S. C., & Jain, S. C. (2012). Performance analysis of a 2-lobe worn multirecess hybrid journal bearing system using different flow control devices. Tribology International, 52, 101–116.

    Article  Google Scholar 

  162. Santos, I., & Watanabe, F. V. (2004). Compensation of cross-coupling stiffness and increase of direct damping in multirecess journal bearings using active hybrid lubrication: Part I: Theory. Journal of Tribology, 126(1), 146–155.

    Article  Google Scholar 

  163. Haugaard, A. M., & Santos, I. (2010). Stability of multiorifice active tilting-pad journal bearings. Tribology International, 43, 1742–1750.

    Article  Google Scholar 

  164. Mizumoto, H., Sunahara, T., Yabuta, Y., Arii, S., Fujii, S., Matsumoto, K., & Murakami, K. (2012). Novel diaphragm-control restrictor for precision hydrostatic-bearing spindle. In4th international conference of Asian-society-for-precision-engineering-and-nanotechnology (vol. 516, p. 463).

  165. Yang, X. D., Wang, Y. Q., Jiang, G. Y., Yan, X. C., & Luo, Y. X. (2015). Dynamic characteristics of hydrostatic active journal bearing of four oil recesses. Tribology transactions, 58(1), 7–17.

    Article  Google Scholar 

  166. Xiong, W. L., Yuan, S., Hu, C., Wang, J., Fan, L. (2021). The laws and ultimate prediction of rotation accuracy for hydrostatic spindle. Journal of Mechanical Engineering, 57(13), 70–82.

    Article  Google Scholar 

  167. Singh, N., Sharma, S. C., Jain, S. C., & Reddy, S. S. (2004). Performance of membrane compensated multirecess hydrostatic/hybrid flexible journal bearing system considering various recess shapes. Tribology International, 37(1), 11–24.

    Article  Google Scholar 

  168. Hu, C., Xiong, W. L., Sun, W. B., & Shuai, Y. (2019). Research on the mechanism of improving hydrostatic spindle rotating accuracy with controllable restrictor. Journal of Mechanical Engineering, 55(11), 160–168.

    Article  Google Scholar 

  169. Hu, C. (2019). Research on the mechanism and law of stiffness and accuracy of the hydrostatic spindle with controllable restrictor. Hunan University.

    Google Scholar 

  170. Zhang, S. (2014). Study of hydraulic bearing of high-speed crankshaft and camshaft grinding machine spindle. Huazhong University of Science and Technology.

    Google Scholar 

  171. Liu, Z. C., Pan, W., Lu, C. H., & Zhang, Y. (2016). Theory research and simulation of hydrostatic spindle axis trajectory based on the piezoelectric thin film differential throttling valve. Journal of Mechanical Engineering, 52(21), 71–77.

    Article  Google Scholar 

  172. Xia, H., Cui, H. L., & Liu, Y. H. (2018). Analysis on performance of hydrostatic bearing. Machine Tool & Hydraulics, 46(4), 84–87.

    Google Scholar 

  173. Wang, X. Z., Yu, T. B., Song, Y. H., & Wang, W. S. (2012). Thermal characteristics analysis of liquid hybrid bearing on ultra-high speed grinding. Advanced Materials Research, 565, 171–176.

    Article  Google Scholar 

  174. Yu, T. B., Wang, X. Z., Guan, P., & Wang, W. (2012). Modal analysis of spindle system on ultra-high speed grinder. Journal of Mechanical Engineering, 48(17), 183–188.

    Article  Google Scholar 

  175. Chen, D. J., Zhou, S., Bian, Y. H., Fan, J. W., & Zhang, F. H. (2016). Analysis and experimental research of hydrostatic spindle oil film slip phenomenon. Journal of Mechanical Engineering, 52(5), 144–153.

    Article  Google Scholar 

  176. Pham, V. H., Nguyen, M. T., & Bui, T. A. (2020). Oil pressure and viscosity influence on stiffness of the hydrostatic spindle bearing of a medium-sized circular grinding machine. International Journal of Modern Physics B, 34(22–24), 2040156.

    Article  Google Scholar 

  177. Abele, E., Altintas, Y., & Brecher, C. (2010). Machine tool spindle units. Annals of the CIRP, 59(2), 781–802.

    Article  Google Scholar 

  178. Gao, G. Y., Yin, Z. W., Jiang, D., & Zhang, X. (2014). Numerical analysis of plain journal bearing under hydrodynamic lubrication by water. Tribology International, 75, 31–38.

    Article  Google Scholar 

  179. Chen, D. J., Zhao, Y., & Liu, J. F. (2020). Characterization and evaluation of rotation accuracy of hydrostatic spindle under the influence of unbalance. Shock and Vibration, 2, 1–16.

    Google Scholar 

  180. Hou, Z., Xiong, W., & Lv, L. (2016). Study on the influence of the journal shape error for hydrostatic spindle rotational error motion. Journal of Mechanical Engineering, 52(15), 147–154.

    Article  Google Scholar 

  181. Zha, J., Chen, Y. L., & Zhang, P. H. (2017). Relationship between elliptical form error and rotation accuracy of hydrostatic journal bearing. Industrial Lubrication and Tribology, 69(6), 905–911.

    Article  Google Scholar 

  182. Zhang, P. H., & Chen, Y. L. (2019). Analysis of error motions of axial locking-prevention hydrostatic spindle. Proceedings of the Institution of Mechanical, 233(1), 3–17.

    Article  Google Scholar 

  183. Fang, C. G., Huo, D. H., & Huang, X. D. (2021). A comprehensive analysis of factors affecting the accuracy of the precision hydrostatic spindle with mid-thrust bearing layout. The International Journal of Advanced Manufacturing Technology, 114, 949–967.

    Article  Google Scholar 

  184. Yamada, K., Nakao, Y., Suzuki, K. (2013). S131012 Design of water hydrostatic spindle with high stiffness. The Proceedings of Mechanical Engineering Congress, 13, S131012-1-S131012-5.

  185. Nagasaka, K., Yamada, K., Yamada, Y., Hayashi, A., Nakao, Y. (2014). B27 Influence of water pressure on stiffness of thrust bearing of water hydrostatic spindle. The Proceedings of The Manufacturing & Machine Tool Conference, 10, 107–108.

    Article  Google Scholar 

  186. Lin, X. W. (2018). Design of hydrostatic bearing with trapezoidal oil chamber and research on the temperature field based on FLUENT. Lanzhou University of Technology.

    Google Scholar 

  187. Zhang, Y. H. (2020). Design of oil cavity structure of a radial hybrid bearing under the condition of journal misalignment based on TRIZ. Zhengzhou University.

    Google Scholar 

  188. Zhang, P. F., Zhang, Z. B., & Guo, H. (2021). Kriging model based optimization of conical hybrid bearing. Modular Machine Tool & Automatic Manufacturing Technique, 2, 62–65.

    Google Scholar 

  189. Guo, S. A., Hou, Z. Q., & Xiong, W. L. (2012). Bearing characteristics study on liquid hybrid bearing based on CFD. Manufacturing Technology & Machine Tool, 9, 57–61.

    Google Scholar 

  190. Wang, L., & Jiang, S. Y. (2013). Performance analysis of high-speed deep/shallow recessed hybrid bearing. Mathematical Problems in Engineering, 6, 1–9.

    Google Scholar 

  191. Meng, S. G., Xiong, W. L., & Wang, S. L. (2015). Analytical research on characteristics of deep-shallow journal bearings with orifice restrictors. Journal of Mechanical Engineering, 51(22), 191–201.

    Article  Google Scholar 

  192. Guo, L., Cao, S., & Hu, J. (2015). Coupling analysis of thermal-dynamics characteristics of high efficiency and precision hybrid spindle. Mechanical Science and Technology for Aerospace Engineering, 34(11), 1686–1692.

    Google Scholar 

  193. Wang, P., Liu, B. G., Feng, E., Zhao, G. (2017). Oil film bearing characteristics of deep-shallow pockets hybrid bearing. Applied Technology, 284, 78–80.

    Google Scholar 

  194. Liu, L., Liu, B. G., Wang, P., Shen, H.P., Ding, H. (2019). Analysis of oil film pressure field and temperature field of hydrodynamic and hydrostatic bearing. Journal of Mechanical & Electrical Engineering, 36(9), 900–906.

    Google Scholar 

  195. Zhang, Y. M., Yu, D. G., & Yang, Q. B. (2018). Oil film characteristics of deep-shallow pocket hybrid bearing. Journal of Northeastern University (Natural Science), 39(10), 1490–1494.

    Google Scholar 

  196. Liu, L. (2020). Multi-objective optimal design of ultra-high speed grinding electro-spindle hydrodynamic and hydrostatic bearing structure. Henan University of Technology.

    Google Scholar 

  197. Liu, H. Y., & Li, Q. F. (2021). Simulation of oil film pressure of multi-oil chamber bearing based on FLUENT. Ship Electronic Engineering, 41(9), 102–107.

    Google Scholar 

  198. Ding, H., & Liu, L. (2021). Multi-objective optimization design of hydro-dynamic-static bearing. Modern Machinery, 4, 78–81.

    Google Scholar 

  199. Guo, H., Jiang, X. Q., & Zhang, Z. B. (2021). Characteristic analysis of conical hybrid bearing based on multi-objective optimization. Lubrication Engineering, 46(11), 1–6.

    Google Scholar 

  200. Wei, S. J., Yang, S., Hu, W. W., Wang, J.L., Jia, Q. (2022). Simulation and experimental research on performance of hybrid bearings of precision machine tool electric spindle. Machine tool & Hydraulics, 50(10), 82–86.

    Google Scholar 

  201. Yuan, S. (2020). Research on accurate simulation and law of rotation accuracy of hydrostatic spindle with controllable restrictor. Hunan University.

    Google Scholar 

  202. Yamada, K., Nagasaka, K., Yamada, Y., Kurihara, K., Hayashi, A., Suzuki, K., & Nakao, Y. (2015). 10515 Influence of water pressure on stiffness of water hydrostatic spindle (Influence of deformation of bearing for displacement of bearing). In The proceedings of conference of Kanto Branch (Vol. 21, pp. 105151–105152).

  203. Zhao, C. M., Ma, P., Gong, C. L., Niu, X. (2014). Research on characteristics of the high precision hydrostatic spindle system base on one-way fluid-solid interaction. Lubrication Engineering, 39(5), 62–68.

    Google Scholar 

  204. Kuznetsov, E., & Glavatskih, S. (2015). Dynamic characteristics of compliant journal bearings considering thermal effects. Tribology International, 94, 288–305.

    Article  Google Scholar 

  205. Zhang, C. (2016). Study on the performance of hydrostatic bearing oil clearance by bearing shell-main shaft deformation. Chongqing University.

    Google Scholar 

  206. Tang, S. Y., He, Y., & Wang, Y. Z. (2017). Thermo-fluid-solid coupling analysis and experimental study on hybrid bearing. Lubrication Engineering, 42, 59–63.

    Google Scholar 

  207. Yin, C. Z., Zhang, L. X., Wang, B. R., Yang, H., Li, X. (2019). Multi-physical field coupling simulation and experimental study on thermal characteristics of hydrostatic spindle. Lubrication Engineering, 44(9), 126–135.

    Google Scholar 

  208. Yin, C. Z. (2019). Research and optimization of thermal characteristics of hydrostatic spindle. China Academy of Engineering Physics.

    Google Scholar 

  209. Yang, D. P. (2019). Analysis on oil film properties of hybrid bearings and experiment rig design. Harbin Institute of Technology.

    Google Scholar 

  210. Du, X. (2019). Parameter design of adjustable oil film clearance hydrostatic and hydrodynamic bearing, precise. Precise Manufacturing & Automation, 4, 6–10.

    Google Scholar 

  211. Chen, D. J., Zhao, Y., Zha, C. Q., & Liu, J. (2020). Fluid-structure interaction on the dynamic characteristics of the hydrostatic spindle in micro-scale. Industrial Lubrication and Tribology, 72(3), 397–403.

    Article  Google Scholar 

  212. Chen, R. L., Wang, X. Z., Du, C., Liu, K., Yuan, X.Y. (2020). Research on lubrication model and dynamics performance control of the hybrid bearing with single tilting pad. Manufacturing Technology & Machine Tool, 7, 117–121.

    Google Scholar 

  213. Wang, X. Z. (2021). Research on lubrication model of hybrid bearing and rotor dynamics performance considering geometric error. Xi’an University of Technology.

    Google Scholar 

Download references

Funding

This financial support for this work was provided by National Key Research and Development Project (2022YFB3404902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Gao, W., Feng, Y. et al. Research Progress of Hydrostatic Bearing and Hydrostatic-Hydrodynamic Hybrid Bearing in High-End Computer Numerical Control Machine Equipment. Int. J. Precis. Eng. Manuf. 24, 1053–1081 (2023). https://doi.org/10.1007/s12541-023-00796-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-023-00796-6

Keywords

Navigation