Skip to main content
Log in

Analytical Prediction of Three Dimensional Chatter Stability Considering Multiple Parameters in Milling

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Chatter has been playing an important role in the stability and quality assurance of milling processes. To effectively predict the stability of milling processes, in this paper, we investigate multiple milling parameters, including the spindle speed, axial milling depth, radial milling width, milling cutter radius, chip thickness, and feed rate. The influence mechanism of these parameters on milling stability is analyzed systematically. Based on the analysis results, three-dimensional (3D) stability lobe diagrams (SLDs) under multiple milling parameters can be obtained, which provide a theoretical basis of preventing and suppressing chatter. The effectiveness of the SLDs is verified by the actual milling experiment. Compared with the traditional two-dimensional SLDs, the proposed 3D SLDs with multiple parameters are more comprehensive, accurate and practical, which show important theoretical significance and engineering application value for the chatter stability prediction and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Siddhpura, M., & Paurobally, R. (2012). A review of chatter vibration research in turning. International Journal of Machine Tools and Manufacture, 61, 27–47. https://doi.org/10.1016/j.ijmachtools.2012.05.007

    Article  Google Scholar 

  2. Tobias, S. A. (1961). Machine tool vibration research. International Journal of Machine Tools and Manufacture, 1(1–2), 1–14. https://doi.org/10.1016/0020-7357(61)90040-3

    Article  Google Scholar 

  3. Quintana, G., & Ciurana, J. (2011). Chatter in machining processes: A review. Int J Mach Tools Manuf, 51(5), 363–376. https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  4. Munoa, J., Beudaert, X., Dombovari, Z., Altintas, Y., Budak, E., Brecher, C., & Stepan, G. (2016). Chatter suppression techniques in metal cutting. CIRP Ann Manuf Technol, 65(2), 785–808. https://doi.org/10.1016/j.cirp.2016.06.004

    Article  Google Scholar 

  5. Drobilek, J., Polacek, M., Bach, P., & Janota, M. (2019). Improved dynamic cutting force model with complex coefficients at orthogonal turning. International Journal of Advanced Manufacturing Technology, 103(5), 2691–2705. https://doi.org/10.1007/s00170-019-03715-0

    Article  Google Scholar 

  6. Tobias, S. A., & Fiswick, W. (1958). Theory of Regenerative Machine Tool Chatter (p. 258). Engineering.

    Google Scholar 

  7. Altintas, Y., & Budak, E. (1995). Analytical prediction of stability lobes in milling. CIRP Annals-Manufacturing Technology, 44(1), 357–362. https://doi.org/10.1016/S0007-8506(07)62342-7

    Article  Google Scholar 

  8. Tyler, C., Troutman, J., & Schmitz, T. (2016). A coupled dynamics, multiple degree of freedom process damping model, Part 2: Milling. Precision Engineering, 46, 73–80. https://doi.org/10.1016/j.precisioneng.2016.03.018

    Article  Google Scholar 

  9. Altintas, Y., & Engin, S. (2001). Generalized modeling of mechanics and dynamics of milling cutters. CIRP Annals-Manufacturing Technology, 50(1), 25–30. https://doi.org/10.1016/S0007-8506(07)62063-0

    Article  Google Scholar 

  10. Khachan, S., & Ismail, F. (2009). Machining chatter simulation in multi-axis milling using graphical method. Int J Mach Tools Manuf, 49(2), 163–170. https://doi.org/10.1016/j.ijmachtools.2008.09.002

    Article  Google Scholar 

  11. Parsian, A., Magnevall, M., Eynian, M., & Beno, T. (2016). Time domain simulation of chatter vibrations in indexable drills. International Journal of Advanced Manufacturing Technology, 89(1–4), 1209–1221. https://doi.org/10.1007/s00170-016-9137-8

    Article  Google Scholar 

  12. Faassen, R., van de Wouw, N., Oosterling, J., & Nijmeijer, H. (2003). Prediction of regenerative chatter by modelling and analysis of high-speed milling. International Journal of Machine Tools and Manufacture, 43(14), 1437–1446. https://doi.org/10.1016/S0890-6955(03)00171-8

    Article  Google Scholar 

  13. Wang, M., Gao, L., & Zheng, Y. (2014). Prediction of regenerative chatter in the high-speed vertical milling of thin-walled workpiece made of titanium alloy. International Journal of Advanced Manufacturing Technology, 72(5), 707–716. https://doi.org/10.1007/s00170-014-5641-x

    Article  Google Scholar 

  14. Mei, C., Cherng, J., & Wang, Y. (2006). Active control of regenerative chatter during metal cutting process. J Manuf Sci Eng ASME, 128(1), 346–349. https://doi.org/10.1115/1.2124991

    Article  Google Scholar 

  15. Kim, N. H., Won, D., & Ziegert, J. C. (2006). Numerical analysis and parameter study of a mechanical damper for use in long slender endmills. Int J Mach Tools Manuf, 46(5), 500–507. https://doi.org/10.1016/j.ijmachtools.2005.07.004

    Article  Google Scholar 

  16. Ganguli, A., Deraemaeker, A., & Preumont, A. (2007). Regenerative chatter reduction by active damping control. Journal of Sound and Vibration, 300(3–5), 847–862. https://doi.org/10.1016/j.jsv.2006.09.005

    Article  Google Scholar 

  17. Ko, J. H., & Tan, S. W. (2013). Chatter Marks Reduction in Meso-Scale Milling through Ultrasonic Vibration Assistance Parallel to Tooling’s Axis. Int J Precis Eng Man., 14(1), 17–22. https://doi.org/10.1007/s12541-013-0003-4

    Article  Google Scholar 

  18. Yamato, S., Nakanishi, K., Suzuki, N., & Kakinuma, Y. (2020). Development of Automatic Chatter Suppression System in Parallel Milling by Real-Time Spindle Speed Control with Observer-Based Chatter Monitoring. Int J Precis Eng Man., 22(2), 227–40. https://doi.org/10.1007/s12541-021-00469-2

    Article  Google Scholar 

  19. Chang, W. Y., Chen, C. C., & Wu, S. J. (2019). Chatter Analysis and Stability Prediction of Milling Tool Based on Zero-Order and Envelope Methods for Real-Time Monitoring and Compensation. Int J Precis Eng Man., 20, 693–700. https://doi.org/10.1007/s12541-019-00054-8

    Article  Google Scholar 

  20. Henninger, C., & Eberhard, P. (2008). Improving the computational efficiency and accuracy of the semi-discretization method for periodic delay-differential equations. European Journal of Mechanics - A/Solids, 27(6), 975–985. https://doi.org/10.1016/j.euromechsol.2008.01.006

    Article  MATH  Google Scholar 

  21. Friedrich, J., Hinze, C., Renner, A., Verl, A., & Lechler, A. (2017). Estimation of stability lobe diagrams in milling with continuous learning algorithms. Robot Comput Integr Manuf, 43, 124–134. https://doi.org/10.1016/j.rcim.2015.10.003

    Article  Google Scholar 

  22. Li, Z., Wang, Z., & Shi, X. (2017). Fast prediction of chatter stability lobe diagram for milling process using frequency response function or modal parameters. International Journal of Advanced Manufacturing Technology, 89(9), 2603–2612. https://doi.org/10.1007/s00170-016-9959-4

    Article  Google Scholar 

  23. Ibañez, A. I., Arrazola, P. J., & Ørskov, K. B. (2020). Workpiece material influence on stability lobe diagram. Procedia Manuf, 47, 479–486. https://doi.org/10.1016/j.promfg.2020.04.342

    Article  Google Scholar 

  24. Brecher, C., Chavan, P., & Epple, A. (2018). Efficient determination of stability lobe diagrams by in-process varying of spindle speed and cutting depth. Advanced Manufacturing, 6(3), 272–279. https://doi.org/10.1007/s40436-018-0225-x

    Article  Google Scholar 

  25. Košarac, A., MlaÐenović, C., Zeljković, M., & Šikuljak, L. (2019). Experimental method for defining the stability lobe diagram in milling č4732 (42crmo4) steel. Acta Technica Corvininesis 12,(2):31–34. http://acta.fih.upt.ro/pdf/2019-2/ACTA-2019-2-05

  26. Thevenot, V., Arnaud, L., Dessein, G., & Cazenave-Larroche, G. (2006). Integration of dynamic behaviour variations in the stability lobes method: 3D lobes construction and application to thin-walled structure milling. International Journal of Advanced Manufacturing Technology, 27(7–8), 638–644. https://doi.org/10.1007/s00170-004-2241-1

    Article  Google Scholar 

  27. Schmitz, T. L., Burns, T. J., Ziegert, J. C., Dutterer, B., & Winfough, W. R. (2004). Tool Length-Dependent Stability Surfaces. Machining Science and Technology, 8(3), 377–397. https://doi.org/10.1081/MST-200038989

    Article  Google Scholar 

  28. Chen, Q., Li, W., Ren, Y., & Zhou, Z. (2020). 3D chatter stability of high-speed micromilling by considering nonlinear cutting coefficients, and process damping. Journal of Manufacturing Processes, 57, 552–565. https://doi.org/10.1016/j.jmapro.2020.07.016

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China [grant number 2019YFB1703700] and the Chongqing Technology Innovation and Application Development Special Key Project [grant number cstc2019jscx-mbdxX0045/ cstc2019jscx-mbdxX0016].

Funding

This work is supported by the National Key R&D Program of China [grant number 2019YFB1703700] and the Chongqing Technology Innovation and Application Development Special Key Project [grant number cstc2019jscx-mbdxX0045/ cstc2019jscx-mbdxX0016].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enming Miao.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare no competing interests.

Ethics approval

The authors hereby state that the present work is in compliance with the ethical standards.

Consent to participate

Not applicable.

Consent for publication

Include appropriate statements. The manuscript has not been published before and is not being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

(MP4 35729 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Miao, E. & Ye, H. Analytical Prediction of Three Dimensional Chatter Stability Considering Multiple Parameters in Milling. Int. J. Precis. Eng. Manuf. 23, 711–720 (2022). https://doi.org/10.1007/s12541-022-00645-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00645-y

Keywords

Navigation