Skip to main content
Log in

Thermal Diffusivity of Ag/CNT-Added Ag Nanocomposites Prepared by Spark Plasma Sintering

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

As electronic devices have become smaller, the importance of heat dissipation has grown. Therefore, to contribute to heat emission reduction efforts, we investigated the thermal diffusivity of Ag/CNT added to Ag matrix and compared it to that of pure Ag. The composite consisted of 99 wt% Ag and 1 wt% Ag/CNT. All samples, including the pure Ag sample, were densified via 10-min spark plasma sintering at 600 °C and 100 MPa. The morphological analysis of the samples was performed using SEM and TEM and their microstructure was derived through XRD. Two different thermal diffusivities were determined via the laser flash method. The remarkable increase in thermal diffusivity, even with the addition of as little as 1% of Ag/CNT, clearly shows that this is a feasible solution to the problem of heat dissipation in electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a:

Directional orientation of the system

h:

Strip thickness

References

  1. Lee, S., & Kim, D. (2017). The evaluation of cross-plane/in-plane thermal diffusivity using laser flash apparatus. Thermochimica Acta,653, 126–132.

    Article  Google Scholar 

  2. Kim, S., Kwon, H.-C., Lee, D., & Lee, H. S. (2017). Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets. Metals and Materials International,23, 1144.

    Article  Google Scholar 

  3. Tuan, W.-H., Choun, T.-T., Kao, C.-T., Wang, S.-Y., & Weng, B.-J. (2018). Thermal diffusivity of graphite paper and its joint with alumina substrate. Journal of the European Ceramic Society,38(1), 187–191.

    Article  Google Scholar 

  4. Hanzel, O., Sedláček, J., Hadzimová, E., & Šajgalík, P. (2015). Thermal properties of alumina–MWCNTs composites. Journal of the European Ceramic Society,35(5), 1559–1567.

    Article  Google Scholar 

  5. Berber, S., Kwon, Y.-K., & Tománek, D. (2000). Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters,84(20), 4613.

    Article  Google Scholar 

  6. Hari, M., Joseph, S. A., Mathew, S., Nithyaja, B., Nampoori, V. P. N., & Radhakrishnan, P. (2013). Thermal diffusivity of nanofluids composed of rod-shaped silver nanoparticles. International Journal of Thermal Sciences,64, 188–194.

    Article  Google Scholar 

  7. Shahriari, E., Varnamkhasti, M. G., & Zamiri, R. (2015). Characterization of thermal diffusivity and optical properties of Ag nanoparticles. Optik,126(19), 2104–2107.

    Article  Google Scholar 

  8. Wu, B., Du, Y., Tang, H., Du, P., Qin, X., & Zhang, L. (1996). Reduced thermal diffusivity of nanostructured silver. Journal of Physics and Chemistry of Solids,57(9), 1211–1213.

    Article  Google Scholar 

  9. Dongmei, B., Huanxin, C., Shanjian, L., & Limei, S. (2017). Measurement of thermal diffusivity/thermal contact resistance using laser photothermal method at cryogenic temperatures. Applied Thermal Engineering,111, 768–775.

    Article  Google Scholar 

  10. Hemant, P., & Vimal, S. (2015). Thermal conductivity of carbon nanotube-silver composite. Transactions of the Nonferrous Metals Society of China,25, 154–161.

    Article  Google Scholar 

  11. Chu, K., Jia, C.-C., & Li, W.-S. (2013). Thermal conductivity enhancement in carbon nanotube/Cu–Ti composites. Applied Physics A,110(2), 269–273.

    Article  Google Scholar 

  12. Cho, S., Kikuchi, K., Miyazaki, T., Takagi, K., Kawasaki, A., & Tsukada, T. (2010). Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites. Scripta Materialia,63(4), 375–378.

    Article  Google Scholar 

  13. Ji, W., Wang, W., Wang, H., Zhang, J., Wang, Y., Zhang, F., et al. (2015). Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics,56, 24–27.

    Article  Google Scholar 

  14. Munir, Z. A., Anselmi-Tamburini, U., & Ohyanagi, M. (2006). The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal Materials Science,41(3), 763–777.

    Article  Google Scholar 

  15. Kasperski, A., Weibel, A., Alkattan, D., Estournès, C., Laurent, C., & Peigney, A. (2015). Double-walled carbon nanotube/zirconia composites: Preparation by spark plasma sintering, electrical conductivity and mechanical properties. Ceramic International,41(10), 13731–13738.

    Article  Google Scholar 

  16. Oddone, V., Boerner, B., & Reich, S. (2017). Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity. Science and Technology of Advanced Materials,18(1), 180–186.

    Article  Google Scholar 

  17. Yeo, S., Mckenna, E., Baney, R., Subhash, G., & Tulenko, J. (2013). Enhanced thermal conductivity of uranium dioxide–silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS). Journal of Nuclear Materials,433(1–3), 66–73.

    Article  Google Scholar 

  18. Parker, W. J., Jenkins, R. J., Butler, C. P., & Abbott, G. L. (1961). Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of Applied Physics,32(9), 1679–1684.

    Article  Google Scholar 

  19. Xie, H., Cai, A., & Wang, X. (2007). Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Physics Letters A,369(1–2), 120–123.

    Article  Google Scholar 

  20. Gao, Y., Zhang, Y., Williams, G. R., O’Hare, D., & Wang, Q. (2016). Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene. Scientific reports,6, 35502.

    Article  Google Scholar 

  21. Mirzaei, A., Janghorban, K., Hashemi, B., Bonyani, M., Leonardi, S. G., & Neri, G. (2017). Characterization and optical studies of PVP-capped silver nanoparticles. Journal of Nanostructure in Chemistry,7(1), 37–46.

    Article  Google Scholar 

  22. Liu, X., Liu, Z., Hao, S., & Chu, W. (2012). Facile fabrication of well-dispersed silver nanoparticles loading on TiO2 nanotube arrays by electrodeposition. Materials Letters,80, 66–68.

    Article  Google Scholar 

  23. Akin, S. R. K., Turan, S., Gencoglu, P., & Mandal, H. (2017). Effect of SiC addition on the thermal diffusivity of SiAlON ceramics. Ceramic International,43(16), 13469–13474.

    Article  Google Scholar 

  24. Sarkar, S., & Das, P. K. (2014). Effect of sintering temperature and nanotube concentration on microstructure and properties of carbon nanotube/alumina nanocomposites. Ceramic International,40(5), 7449–7458.

    Article  Google Scholar 

  25. Kumari, L., Zhang, T., Du, G. H., Li, W. Z., Wang, Q. W., Datye, A., et al. (2008). Thermal properties of CNT-alumina nanocomposites. Composites Science and Technology,68(9), 2178–2183.

    Article  Google Scholar 

  26. Marquis, F. D. S., & Chibante, L. P. F. (2005). Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. JOM Journal of the Minerals Metals and Materials Society,57(12), 32–43.

    Article  Google Scholar 

  27. Taha, T. J., Lefferts, L., & van der Meer, T. H. (2015). Indirect involvement of amorphous carbon layer on convective heat transfer enhancement using carbon nanofibers. Journal of Heat Transfer,137(9), 091007.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2017R1A6A3A11030900 and NRF-2019R1A6A1A11055660). This study has been conducted with the support of the Korea Institute of Industrial Technology (KITECH) as “Development of aluminum micro heater design and fabrication technology with uniform temperature distribution through optimization design (kitech-IR-190069)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhyun Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Park, S., Kim, D. et al. Thermal Diffusivity of Ag/CNT-Added Ag Nanocomposites Prepared by Spark Plasma Sintering. Int. J. Precis. Eng. Manuf. 21, 1357–1362 (2020). https://doi.org/10.1007/s12541-020-00334-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00334-8

Keywords

Navigation