Skip to main content
Log in

Screening Product Tolerances Considering Semantic Variation Propagation and Fusion for Assembly Precision Analysis

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Considering that each computer-aided design (CAD) system has independent geometric dimensioning and tolerancing modeling method, precision information model generated by different CAD systems is difficult to be shared and reused by the downstream precision analysis system. To tackle the problem that tolerance semantic information cannot be transmitted through data exchange standards, this paper aims to propose a novel semantic tolerance screening approach to represent precision information for assembly precision analysis (APA) in the design stage. Based on semantic correlation between tolerance propagation and accumulation, precision information of multi-parts is preliminarily screened out. Then by utilizing semantic web rule language rules to determine the type and position of tolerance zones, multiple tolerances existing on a precision feature surface are refinedly screened out. Finally, a formal tolerance screening ontology, named ToS-Ontology, is generated for performing APA of complex products. The effectiveness of the proposed approach is demonstrated by a practical example, which is to calculate center distance between two holes to ensure bolts can pass smoothly in the limit case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

CAD:

Computer-aided design

GD&T:

Geometric dimensioning and tolerancing

OWL:

Web ontology language

SWRL:

Semantic web rule language

GTZ:

Geometric tolerance zone

APA:

Assembly precision analysis

ASP:

Assembly sequence planning

PFS:

Precision feature surface

AFS:

Assembly feature surface

MC:

Monte Carlo

DL:

Description logic

TTRS:

Technologically and topologically related surface

TBox:

Terminology box

ABox:

Assertion box

T-Map:

Tolerance-map

DLM:

Direct linearization method

DTZ:

Dimension tolerance zone

References

  1. Recker, J., Mendling, J., & Hahn, C. (2013). How collaborative technology supports cognitive processes in collaborative process modeling: A capabilities-gains-outcome model. Information Systems,38(8), 1031–1045.

    Google Scholar 

  2. Tao, X. Y., Chen, X., Zeng, X. Y., & Koehl, L. (2018). A customized garment collaborative design process by using virtual reality and sensory evaluation on garment fit. Computers & Industrial Engineering,115, 683–695.

    Google Scholar 

  3. Dong, T. Y., Tong, R. F., Zhang, L., & Dong, J. X. (2005). A collaborative approach to assembly sequence planning. Advanced Engineering Informatics,19(2), 155–168.

    Google Scholar 

  4. Bock, C., Zha, X. F., Hyo-Won, S., & Lee, J. H. (2010). Ontological product modeling for collaborative design. Advanced Engineering Informatics,24(4), 510–524.

    Google Scholar 

  5. McHarek, M., Hammadi, M., Azib, T., Larouci, C., & Choley, J. Y. (2019). Collaborative design process and product knowledge methodology for mechatronic systems. Computers in Industry,105, 213–228.

    Google Scholar 

  6. Qin, F. W., Gao, S. M., Yang, X. L., Li, M., & Bai, J. (2016). An ontology-based semantic retrieval approach for heterogeneous 3D CAD models. Advanced Engineering Informatics,30(4), 751–768.

    Google Scholar 

  7. Song, I. H., & Chung, S. C. (2009). Synthesis of the digital mock-up system for heterogeneous CAD assembly. Computers in Industry,60(5), 285–295.

    Google Scholar 

  8. Nyamsuren, P., Lee, S. H., & Kim, S. (2013). A web-based revision control framework for 3D CAD model data. International Journal of Precision Engineering and Manufacturing,14(10), 1797–1803.

    Google Scholar 

  9. Lu, W. L., Qin, Y. C., Liu, X. J., Huang, M. F., Zhou, L. P., & Jiang, X. Q. (2015). Enriching the semantics of variational geometric constraint data with ontology. Computer-Aided Design,63, 72–85.

    MathSciNet  Google Scholar 

  10. Goka, E., Beaurepaire, P., Homri, L., & Dantan, J. Y. (2019). Probabilistic-based approach using kernel density estimation for gap modeling in a statistical tolerance analysis. Mechanism and Machine Theory,139, 294–309.

    Google Scholar 

  11. Yan, X. Y., & Ballu, A. (2018). Tolerance analysis using skin model shapes and linear complementarity conditions. Journal of Manufacturing Systems,48, 140–156.

    Google Scholar 

  12. Corrado, A., & Polini, W. (2017). Manufacturing signature in jacobian and torsor models for tolerance analysis of rigid parts. Robotics and Computer-Integrated Manufacturing,46, 15–24.

    Google Scholar 

  13. Khodaygan, S., & Movahhedy, M. R. (2016). A comprehensive fuzzy feature-based method for worst case and statistical tolerance analysis. International Journal of Computer Integrated Manufacturing,29(1), 42–63.

    Google Scholar 

  14. Jeevanantham, A. K., Chaitanya, S. V., & Rajeshkannan, A. (2019). Tolerance analysis in selective assembly of multiple component features to control assembly variation using matrix model and genetic algorithm. International Journal of Precision Engineering and Manufacturing,20(10), 1801–1815.

    Google Scholar 

  15. Zeng, W. H., & Rao, Y. Q. (2019). Modeling of assembly deviation with considering the actual working conditions. International Journal of Precision Engineering and Manufacturing,20(5), 791–803.

    Google Scholar 

  16. Yang, C. C., & Naikan, V. N. A. (2003). Optimum tolerance design for complex assemblies using hierarchical interval constraint networks. Computers & Industrial Engineering,45(3), 511–543.

    Google Scholar 

  17. Zhong, Y. R., Qin, Y. C., Huang, M. F., Lu, W. L., Gao, W. X., & Du, Y. L. (2013). Automatically generating assembly tolerance types with an ontology-based approach. Computer-Aided Design,45(11), 1253–1275.

    Google Scholar 

  18. Liu, T., Li, Z. M., Jin, S., & Chen, W. (2018). A variation analysis method for linkage mechanism with consideration of joint clearance and deformation. International Journal of Precision Engineering and Manufacturing,19(10), 1495–1506.

    Google Scholar 

  19. Sanfilippo, E. M., Belkadi, F., & Bernard, A. (2019). Ontology-based knowledge representation for additive manufacturing. Computers in Industry,109, 182–194.

    Google Scholar 

  20. Desrochers, A., & Clement, A. (1994). A dimensioning and tolerancing assistance model for CAD-CAM systems. International Journal of Advanced Manufacturing Technology,9(6), 352–361.

    Google Scholar 

  21. Whitney, D. E., Gilbert, O. L., & Jastrzebski, M. (1994). Representation of geometric variations using matrix transforms for statistical tolerance analysis in assemblies. Research in Engineering Design-Theory Applications and Concurrent Engineering,6(4), 191–210.

    Google Scholar 

  22. Cardewhall, M. J., Labans, T., West, G., & Dench, P. (1993). A method of representing dimensions and tolerances on solid based freeform surfaces. Robotics and Computer-Integrated Manufacturing,10(3), 223–234.

    Google Scholar 

  23. Zou, Z. H., & Morse, E. P. (2004). A gap-based approach to capture fitting conditions for mechanical assembly. Computer-Aided Design,36(8), 691–700.

    Google Scholar 

  24. Davidson, J. K., Mujezinovic, A., & Shah, J. J. (2002). A new mathematical model for geometric tolerances as applied to round faces. Journal of Mechanical Design,124(4), 609–622.

    Google Scholar 

  25. Mujezinovic, A., Davidson, J. K., & Shah, J. J. (2004). A new mathematical model for geometric tolerances as applied to polygonal faces. Journal of Mechanical Design,126(3), 504–518.

    Google Scholar 

  26. Ameta, G., Davidson, J. K., & Shah, J. J. (2007). Tolerance-maps applied to a point-line cluster of features. Journal of Mechanical Design,129(8), 782–792.

    Google Scholar 

  27. Laperriere, L., Ghie, W., & Desrochers, A. (2002). Statistical and deterministic tolerance analysis and synthesis using a unified Jacobian-torsor model. CIRP Annals-Manufacturing Technology,51(1), 417–420.

    MATH  Google Scholar 

  28. Dantan, J. Y., Ballu, A., & Mathieu, L. (2008). Geometrical product specifications—Model for product life cycle. Computer-Aided Design,40(4), 493–501.

    Google Scholar 

  29. Schleich, B., Anwer, N., Mathieu, L., & Wartzack, S. (2014). Skin Model Shapes: A new paradigm shift for geometric variations modelling in mechanical engineering. Computer-Aided Design,50, 1–15.

    Google Scholar 

  30. Anwer, N., Schleich, B., Mathieu, L., & Wartzack, S. (2014). From solid modelling to skin model shapes: Shifting paradigms in computer-aided tolerancing. CIRP Annals-Manufacturing Technology,63(1), 137–140.

    Google Scholar 

  31. Dantan, J. Y., & Qureshi, A. J. (2009). Worst-case and statistical tolerance analysis based on quantified constraint satisfaction problems and Monte Carlo simulation. Computer-Aided Design,41(1), 1–12.

    Google Scholar 

  32. Hong, Y. S., & Chang, T. C. (2002). A comprehensive review of tolerancing research. International Journal of Production Research,40(11), 2425–2459.

    MATH  Google Scholar 

  33. Taguchi, G. (1978). Performance analysis design. International Journal of Production Research,16(6), 521–530.

    Google Scholar 

  34. Seo, H. S., & Kwak, B. M. (2002). Efficient statistical tolerance analysis for general distributions using three-point information. International Journal of Production Research,40(4), 931–944.

    MATH  Google Scholar 

  35. Skowronski, V. J. (1998). Calculating derivatives in statistical tolerance analysis. Computer-Aided Design,30(5), 367–375.

    MATH  Google Scholar 

  36. Gao, J. S., Chase, K. W., & Magleby, S. P. (1998). Generalized 3-D tolerance analysis of mechanical assemblies with small kinematic adjustments. IIE Transactions,30(4), 367–377.

    Google Scholar 

  37. Shan, A., Roth, R. N., & Wilson, R. J. (1999). A new approach to statistical geometrical tolerance analysis. International Journal of Advanced Manufacturing Technology,15(3), 222–230.

    Google Scholar 

  38. Tsai, J. C., & Kuo, C. H. (2012). A novel statistical tolerance analysis method for assembled parts. International Journal of Production Research,50(12), 3498–3513.

    MathSciNet  Google Scholar 

  39. Wang, G., Tian, X., Geng, J., & Guo, B. (2015). A knowledge accumulation approach based on bilayer social wiki network for computer-aided process innovation. International Journal of Production Research,53(8), 2365–2382.

    Google Scholar 

  40. Xing, X. J., Zhong, B. T., Luo, H. B., Li, H., & Wu, H. T. (2019). Ontology for safety risk identification in metro construction. Computers in Industry,109, 14–30.

    Google Scholar 

  41. He, W., Wang, F. K., & Akula, V. (2017). Managing extracted knowledge from big social media data for business decision making. Journal of Knowledge Management,21(2), 275–294.

    Google Scholar 

  42. Gao, J., & Bernard, A. (2018). An overview of knowledge sharing in new product development. International Journal of Advanced Manufacturing Technology,94(5–8), 1545–1550.

    Google Scholar 

  43. Liu, Q., Zhang, H., Leng, J., & Chen, X. (2019). Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. International Journal of Production Research,57(12), 3903–3919.

    Google Scholar 

  44. Qiao, L. H., Kao, S. T., & Zhang, Y. Z. (2011). Manufacturing process modelling using process specification language. International Journal of Advanced Manufacturing Technology,55(5–8), 549–563.

    Google Scholar 

  45. Qiao, L. H., Qie, Y. F., Zhu, Z. W., Zhu, Y. X., Zaman, U. K. U., & Anwer, N. (2018). An ontology-based modelling and reasoning framework for assembly sequence planning. International Journal of Advanced Manufacturing Technology,94(9–12), 4187–4197.

    Google Scholar 

  46. Qin, Y. C., Lu, W. L., Qi, Q. F., Li, T. K., Huang, M. F., Scott, P. J., et al. (2017). Explicitly representing the semantics of composite positional tolerance for patterns of holes. International Journal of Advanced Manufacturing Technology,90(5–8), 2121–2137.

    Google Scholar 

  47. Qin, Y. C., Lu, W. L., Qi, Q. F., Liu, X. J., Huang, M. F., Scott, P. J., et al. (2018). Towards an ontology-supported case-based reasoning approach for computer-aided tolerance specification. Knowledge-Based Systems,141, 129–147.

    Google Scholar 

  48. Sarigecili, M. I., Roy, U., & Rachuri, S. (2014). Interpreting the semantics of GD&T specifications of a product for tolerance analysis. Computer-Aided Design,47, 72–84.

    Google Scholar 

  49. ISO. (2012). Geometrical product specifications (GPS)-geometrical tolerancing-tolerances of form, orientation, location and run-out. Geneva: International Organization for Standardization.

    Google Scholar 

  50. Qin, Y. C., Lu, W. L., Liu, X. J., Huang, M. F., Zhou, L. P., & Jiang, X. Q. (2015). Description logic-based automatic generation of geometric tolerance zones. International Journal of Advanced Manufacturing Technology,79(5–8), 1221–1237.

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Science Basic Research Project of Shaanxi Province, China (Grant No. 2019JM-073) and the China Postdoctoral Science Foundation (Grant No. 2018M633439). The authors would also like to thank the editors and anonymous referees for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangfeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Tian, X. & Wang, G. Screening Product Tolerances Considering Semantic Variation Propagation and Fusion for Assembly Precision Analysis. Int. J. Precis. Eng. Manuf. 21, 1259–1278 (2020). https://doi.org/10.1007/s12541-020-00331-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00331-x

Keywords

Navigation