Skip to main content
Log in

Extended High Gain Observer-Based Sliding Mode Control for an Electro-hydraulic System with a Variant Payload

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents a robust control regarding position control of an electro-hydraulic rotary actuator (EHRA) system under the presence of the lumped uncertainties such as the variant payload, the unknown friction, and the uncertain parameters. The proposed control is developed on a high order sliding mode control (HOSMC) and an extended high gain observer (EHGO). In detail, the HOSMC is derived to not only reduce the chattering effect but also guarantee the stability for the EHRA. In addition, the EHGO is used as a disturbance estimator to compensate the lumped uncertainties. Consequently, it helps to improve control performance. Furthermore, the stability and robustness of the whole system are theoretically proved by a Lyapunov approach. The proposed control is practically implemented through both the co-simulation between AMESIM and MATLAB, and the experiments. The results are compared to other controllers to exhibit the effectiveness of the proposed control with the lumped uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Truong, D. Q., & Ahn, K. K. (2009). Force control for hydraulic load simulator using self-tuning grey predictor—fuzzy PID. Mechatronics,19(2), 233–246.

    Article  Google Scholar 

  2. Kim, H. M., Park, S. H., Song, J. H., & Kim, J. S. (2010). Robust position control of electro-hydraulic actuator systems using the adaptive back-stepping control scheme. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,224(6), 737–746.

    Google Scholar 

  3. Lee, S.-R., & Hong, Y.-S. (2017). A dual EHA system for the improvement of position control performance via active load compensation. International Journal of Precision Engineering and Manufacturing,18(7), 937–944.

    Article  Google Scholar 

  4. Park, H.-G., Jeong, K.-H., Park, M.-K., Lee, S.-H., & Ahn, K.-K. (2018). Electro hydrostatic actuator system based on active stabilizer system for vehicular suspension systems. International Journal of Precision Engineering and Manufacturing,19(7), 993–1001.

    Article  Google Scholar 

  5. Kim, J.-H., & Hong, Y.-S. (2018). Robust internal-loop compensation of pump velocity controller for precise force control of an electro-hydrostatic actuator. (in Ko). Journal of Drive and Control,15(4), 55–60.

    Google Scholar 

  6. Kim, J.-H., & Hong, Y.-S. (2019). Investigation of system efficiency of an electro-hydrostatic actuator with an external gear pump. (in Ko). Journal of Drive and Control,16(2), 15–21.

    Google Scholar 

  7. Tri, N. M., Nam, D. N. C., Park, H. G., & Ahn, K. K. (2015). Trajectory control of an electro hydraulic actuator using an iterative backstepping control scheme. Mechatronics,29, 96–102.

    Article  Google Scholar 

  8. Truong, D. Q., & Ahn, K. K. (2011). “Force control for press machines using an online smart tuning fuzzy PID based on a robust extended Kalman filter. Expert Systems with Applications,38(5), 5879–5894.

    Article  Google Scholar 

  9. Tri, N. M., Ba, D. X., & Ahn, K. K. (2018). A gain-adaptive intelligent nonlinear control for an electrohydraulic rotary actuator. International Journal of Precision Engineering and Manufacturing,19(5), 665–673.

    Article  Google Scholar 

  10. Perron, M., Lafontaine, J. D., & Desjardins, Y. (2005). Sliding-mode control of a servomotor-pump in a position control application. In Canadian conference on electrical and computer engineering 2005 (pp. 1287–1291).

  11. Lin, Y., Shi, Y., & Burton, R. (2013). Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system. IEEE/ASME Transactions on Mechatronics,18(1), 1–10.

    Article  Google Scholar 

  12. Ha, T. W., Jun, G. H., Nguyen, M. T., Han, S. M., Shin, J. W., & Ahn, K. K. (2017). Position control of an Electro-Hydrostatic Rotary Actuator using adaptive PID control. (in Ko). Journal of Drive and Control,14(4), 37–44.

    Google Scholar 

  13. Has, Z., Rahmat, M. F. A., Husain, A. R., & Ahmad, M. N. (2015). Robust precision control for a class of electro-hydraulic actuator system based on disturbance observer. International Journal of Precision Engineering and Manufacturing,16(8), 1753–1760.

    Article  Google Scholar 

  14. Ahn, K. K., Nam, D. N. C., & Jin, M. (2014). Adaptive backstepping control of an electrohydraulic actuator. IEEE/ASME Transactions on Mechatronics,19(3), 987–995.

    Article  Google Scholar 

  15. Jun, G. H., & Ahn, K. K. (2017). Extended-state-observer-based nonlinear servo control of an electro-hydrostatic actuator. (in Ko). Journal of Drive and Control,14(4), 61–70.

    Google Scholar 

  16. Levant, A. (2005). Homogeneity approach to high-order sliding mode design. Automatica,41(5), 823–830.

    Article  MathSciNet  MATH  Google Scholar 

  17. Levant, A. (1993). “Sliding order and sliding accuracy in sliding mode control. International Journal of Control,58(6), 1247–1263.

    Article  MathSciNet  MATH  Google Scholar 

  18. Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics,56(3), 900–906.

    Article  Google Scholar 

  19. Yao, J., Jiao, Z., & Ma, D. (2014). Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Transactions on Industrial Electronics,61(11), 6285–6293.

    Article  Google Scholar 

  20. Yue, M., Wang, L., & Ma, T. (2017). Neural network based terminal sliding mode control for WMRs affected by an augmented ground friction with slippage effect. IEEE/CAA Journal of Automatica Sinica,4(3), 498–506.

    Article  MathSciNet  Google Scholar 

  21. Yen, V. T., Nan, W. Y., Van Cuong, P., Quynh, N. X., & Thich, V. H. (2017). Robust adaptive sliding mode control for industrial robot manipulator using fuzzy wavelet neural networks. International Journal of Control, Automation and Systems,15(6), 2930–2941.

    Article  Google Scholar 

  22. Yen, V. T., Nan, W. Y., & Van Cuong, P. (2019). Robust adaptive sliding mode neural networks control for industrial robot manipulators. International Journal of Control, Automation and Systems,17(3), 783–792.

    Article  Google Scholar 

  23. Tran, M.-D., & Kang, H.-J. (2016). A novel adaptive finite-time tracking control for robotic manipulators using nonsingular terminal sliding mode and RBF neural networks. International Journal of Precision Engineering and Manufacturing,17(7), 863–870.

    Article  Google Scholar 

  24. Liang, X., Li, S., & Fei, J. (2016). Adaptive fuzzy global fast terminal sliding mode control for microgyroscope system. IEEE Access,4, 9681–9688.

    Article  Google Scholar 

  25. Wang, W., Lv, F., & Zhang, L. (2018). Adaptive fuzzy finite-time control for uncertain nonlinear systems with dead-zone input. International Journal of Control, Automation and Systems,16(5), 2549–2558.

    Article  Google Scholar 

  26. Cui, R., Chen, L., Yang, C., & Chen, M. (2017). Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Transactions on Industrial Electronics,64(8), 6785–6795.

    Article  Google Scholar 

  27. Khalil, H. K. (2017). Extended high-gain observers as disturbance estimators. SICE Journal of Control, Measurement, and System Integration,10(3), 125–134.

    Article  Google Scholar 

  28. Heredia, J. A., & Wen, Y. (2000). A high-gain observer-based PD control for robot manipulator. In Proceedings of the 2000 American control conference. ACC (IEEE Cat. No. 00CH36334) (Vol. 4, pp. 2518–2522).

  29. Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R., & Luviano-Juárez, A. (2019). Active disturbance rejection control of the inertia wheel pendulum through a tangent linearization approach. International Journal of Control, Automation and Systems,17(1), 18–28.

    Article  Google Scholar 

  30. Chen, H.-T., Song, S.-M., & Zhu, Z.-B. (2018). Robust finite-time attitude tracking control of rigid spacecraft under actuator saturation. International Journal of Control, Automation and Systems,16(1), 1–15.

    Article  Google Scholar 

  31. Wang, C., Jiao, Z., Wu, S., & Shang, Y. (2014). Nonlinear adaptive torque control of electro-hydraulic load system with external active motion disturbance. Mechatronics,24(1), 32–40.

    Article  Google Scholar 

  32. Manring, N. (2005). Hydraulic control systems. New York: Wiley.

    Google Scholar 

  33. Khalil, H. K. (2008). High-gain observers in nonlinear feedback control. In 2008 International conference on control, automation and systems (pp. xlvii–lvii).

  34. Khalil, H. K. (1996). Nonlinear systems. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (NRF-2017R1A2B3004625) and partly supported by the Ministry of Trade, Industry & Energy(MOTIE, Korea) under Industrial Technology Innovation Program(No. 10067184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Kwan Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, DT., Do, TC. & Ahn, KK. Extended High Gain Observer-Based Sliding Mode Control for an Electro-hydraulic System with a Variant Payload. Int. J. Precis. Eng. Manuf. 20, 2089–2100 (2019). https://doi.org/10.1007/s12541-019-00256-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00256-0

Keywords

Navigation