Skip to main content
Log in

A High-Precision Form-Free Metrological Method of Aeroengine Blades

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In order to solve the problems in existing methods for blade profile metrology, such as low accuracy and efficiency, poor flexibility, various constraints, a high-precision form-free method for blade profile metrology is proposed. In the paper, the operational principle, key technologies and evaluation methodology are analyzed in detail. A high-precision method for blade profile metrology based on the concept of “Synchronization of Planning and Measurement” is proposed to solve three key problems for blade metrology synchronously: theoretical data acquisition, path planning and sampling strategy analysis, and profile measurement. A form-free evaluation methodology for blade profile based on parametric modeling is also discussed. The results show that the metrology and evaluation for blade profile are executed automatically without theoretical model data, thus improving the efficiency and flexibility greatly. In addition, all the measurements are completed in the positions near the reference distance of the sensor, thus the depth of measurement approaches 0 mm and the measurement error is no more than 10 μm. The method proposed in the paper is a form-free method with a high precision and has a good application prospect in the field of free-form surface measurement.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

O-XYZ :

Measuring coordinate system

O′-X′Y′Z′ :

Parameter coordinate system

\(P_{1pi} (x_{1pi} ,y_{1pi} ,z_{1pi} )\) :

Planning coordinates for section 1

\(P_{1mi} (x_{1mi} ,y_{1mi} ,z_{1mi} )\) :

Precise measuring coordinates for section 1

\(P_{2pi} (x_{2pi} ,y_{2pi} ,z_{2pi} )\) :

Planning coordinates for section 2

pi :

Planning coordinates index

mi :

Precise measuring coordinates index

i :

Index

O 1 :

Zero spot of sensor PS

O 2 :

Zero spot of sensor MS

x 1, y 1, z 1 :

Coordinates of O1

x 2, y 2, z 2 :

Coordinates of O2

Δz :

Deviation of O1 and O2 in Z-axis direction

R L :

Radius of lens

β :

Angle between incident light and the principal optical axis of lens

l :

Reference distance of the sensor

l′:

Distance between CCD and lens

K S :

Structural coefficient of sensor

E α :

Inclination error

α :

Inclination angle

d :

Measured depth of field

\(Q_{i} (x_{i} ,y_{i} )\) :

Coordinates for the fine adjustment of fixture attitude

γ :

Adjustment angle, angle between the normal line on the side of base platform and Y axis

\((x_{c} ,y_{c} )\) :

Center coordinates for the fitting circular of the selected profile of the mounting column

\(R_{c}\) :

Radius for the fitting circular of the selected profile of the mounting column

b :

Chord length

R q :

Leading edge radius

R h :

Trailing edge radius

f max :

Maximum deflection

c max :

Maximum thickness

χ 1 :

Leading edge angle

χ 2 :

Trailing edge angle

θ :

Profile camber angle

\(\varphi\) :

Chord line angle

\(O'(x_{0} ,y_{0} )\) :

Origin coordinate of the parameter coordinate system

\(\delta_{i}\) :

Normal line angle of the center point of fitted circular arc

\(\omega_{i}\) :

Center angle of the fitted circular arc

\(P_{i} (x_{i} ,y_{i} )\) :

Planning coordinates for piecewise circle fitting

\((m,n)\) :

Center coordinates of piecewise circle

\(R\) :

Radius of piecewise circle

\(\Delta_{i}\) :

Fitting error of each point of piecewise circle

\(\left| {\Delta_{i} } \right|_{{\rm max} }\) :

Maximum of fitting error for piecewise circle

\(e_{0}\) :

Limit value of fitting error for piecewise circle

\(\omega_{0}\) :

Limit value of inclination angle

\(\omega_{center}\) :

Center angle of piecewise circle

j, h :

Cycle variables

\(A(x_{A} ,y_{A} )\), \(B(x_{B} ,y_{B} )\) :

Coordinates of the endpoints of arc AB

\(O_{1} (x_{O} ,y_{O} )\) :

Center coordinates of arc AB

\(y(x)\) :

Model of mean camber line

\(r(x)\) :

Model of thickness distribution

σ :

Standard deviation of form-free measurement

\(r_{s}\) :

Radius of the standard mandrel

\(P_{di} (x_{di} ,y_{di} )\) :

Measurement coordinates of the standard mandrel

\(P_{si} (x_{si} ,y_{si} )\) :

Datum coordinates of the standard mandrel

\(E_{i}\) :

Measurement errors of coordinates for the form-free metrology system

References

  1. Feng, H. C., & Zhang, M. D. (2011). The tool path planning Method of aeroengine blade 5-axis NC milling. Manufacturing Technology and Machine Tool,32(2), 102–106.

    Google Scholar 

  2. Liu, G. D., Pu, Z. B., Zhang, Z., & Sun, Y. B. (2002). New method for the measurement of aeroengine blade edge. In Proceedings of the SPIE (vol. 4929, pp. 475–480). https://doi.org/10.1117/12.483255.

  3. Sun, B., & Li, B. (2015). A rapid method to achieve aero-engine blade form detection. Sensors,15, 12782–12801. https://doi.org/10.3390/s150612782.

    Article  Google Scholar 

  4. Li, X. Z., Shi, Z. Y., Chen, H. F., & Lin, J. C. (2017). Current status and trends of aeroengine blade profile metrology. Journal of Beijing University of Technology,43(4), 557–565.

    Article  Google Scholar 

  5. Ahn, H. K., Kang, H., Ghim, Y. S., et al. (2019). Touch probe tip compensation using a novel transformation algorithm for coordinate measurements of curved surfaces. International Journal of Precision Engineering and Manufacturing,20(2), 193–199. https://doi.org/10.1007/s12541-019-00076-2.

    Article  Google Scholar 

  6. Vissiere, A., Nouira, H., Damak, M., & Gibaru, O. (2015). Implementation of capacitive probes for ultra-high precision machine for cylindricity measurement with nanometre level of accuracy. International Journal of Precision Engineering and Manufacturing,16(5), 883–893. https://doi.org/10.1007/s12541-015-0116-z.

    Article  Google Scholar 

  7. Younes, E., Abderrazak, E. O., & Ahmed, C. (2018). Experimental investigation of dynamic errors in coordinate measuring machines for high speed measurement. International Journal of Precision Engineering and Manufacturing,19(8), 1115–1124. https://doi.org/10.1007/s12541-018-0132-x.

    Article  Google Scholar 

  8. Wu, Z. H., & Lv, Y. M. (2017). Automatic measuring technology of CMM for aviation blade. Tool Engineering,51(12), 3–7.

    Google Scholar 

  9. Zhang, F., Jiang, Z. D., Ding, J. J., Li, B., & Chen, L. (2008). A path planning method for large-scale blade profile measurement based on neutral network. In Proceedings of the SPIE (vol. 7155). https://doi.org/10.1117/12.814566.

  10. Ristic, M., Brujic, D., & Ainsworth, I. (2004). Measurement-based updating of turbine blade CAD models: A case study. International Journal of Computer Integrated Manufacturing,17, 352–363. https://doi.org/10.1080/0951192032000159148.

    Article  Google Scholar 

  11. Mahboubkhah, M., Aliakbari, M., & Burvill, C. (2018). An investigation on measurement accuracy of digitizing methods in turbine blade reverse engineering. In Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (vol. 232, pp. 1653–1671).https://doi.org/10.1177/0954405416673681.

    Article  Google Scholar 

  12. Song, Y. W., & Xi, P. (2004). Parametric design of turbine blades based on feature modeling. Journal of Beijing University of Aeronautics and Astronautics,30(4), 321–324.

    MathSciNet  Google Scholar 

  13. Fan, Q. M., Cao, Y., & Liu, H. J. (2011). Research on aero engine blade Information model based on manufacturability evaluation. Advanced Materials Research,346, 294–300. https://doi.org/10.4028/www.scientific.net/AMR.346.294.

    Article  Google Scholar 

  14. Pechenin, V. A., Bolotov, M. A., Ruzanov, N. V., & Yanyukina, M. V. (2015). Optimization of measurements of the geometry of parts with complex surfaces. Measurement Techniques,58(3), 261–268. https://doi.org/10.1007/s11018-015-0696-0.

    Article  Google Scholar 

  15. Shi, Z. Y., Zhang, B., & Li, X. M. (2012). Form-free measurement mode in precision engineering. Nanotechnology and Precision Engineering,10(2), 132–136.

    Google Scholar 

  16. Yu, H. Y., Liu, W. T., & Zhao, G. L. (2008). Key techniques of YP02 blade measuring machine software system. Chinese Journal of Mechanical Engineering,44(4), 239–245.

    Article  Google Scholar 

  17. Shao, W., Guo, H., Wu, Y., Zhou, A., & Peng, P. (2018). Measurement method for aeroengine blade based on large reflection angle noncontact sensing technology. Optical Engineering,57(5), 054115. https://doi.org/10.1117/1.OE.57.5.054115.

    Article  Google Scholar 

  18. Zappa, E., Liu, R., Trainelli, L., et al. (2018). Laser and vision-based measurements of helicopter blade angles. Measurement,118, 29–42. https://doi.org/10.1016/j.measurement.2017.12.037.

    Article  Google Scholar 

  19. Li, B., Sun, B., Chen, L., & Wei, X. (2015). Application of laser displacement sensor to free-form surface measurement. Optics and Precision Engineering,23(7), 1939–1947.

    Article  Google Scholar 

  20. Sun, B., & Li, B. (2016). Laser displacement sensor in the application of aero-engine blade measurement. IEEE Sensors Journal,16(5), 1377–1384.

    Article  MathSciNet  Google Scholar 

  21. Abdullah, A. B., Sapuan, S. M., Samad, Z., et al. (2012). Geometrical error analysis of cold forged AUV propeller blade using optical measurement method. Advanced Materials Research,383–390, 7117–7121.

    Google Scholar 

  22. Sun, B., & Li, B. (2015). A quantitative error compensation model of the inclination angle of the laser displacement sensor. Chinese Journal of Scientific Instrument,36(5), 996–1004.

    MathSciNet  Google Scholar 

  23. Li, B., Li, F., & Liu, H. (2014). A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces. Measurement Science & Technology,25(1), 5204–5214.

    Google Scholar 

  24. Chen, W. B. (2012). Design and realization of debugging fixture in blade machining. Manufacturing Automation,34(15), 127–129.

    Google Scholar 

  25. Huo, G., Jiang, X., Su, C., et al. (2019). CNC tool path generation for freeform surface machining based on preferred feed direction field. International Journal of Precision Engineering and Manufacturing,20(5), 777–790. https://doi.org/10.1007/s12541-019-00084-2.

    Article  Google Scholar 

  26. Chan, C. H. L., Wang, Q., Holden, R., et al. (2019). Optimal number of control points for fitting B-splines in wind turbine blade measurement. International Journal of Precision Engineering and Manufacturing,20(9), 1507–1517. https://doi.org/10.1007/s12541-019-00173-2.

    Article  Google Scholar 

  27. Duan, Z. Y., Ren, J. G., & Zhao, W. H. (2013). Principle and technology of measurement of blade profile. Measurement Technique,1, 26–31. https://doi.org/10.3969/j.issn.1000-0771.2013.1.07.

    Article  Google Scholar 

  28. Wang, X. J., & Zhou, J. (2015). Motion path planning and inspection realizing of laser inspection machine for blade-surface. Journal of Mechanical and Electrical Engineering,32(11), 1453–1458.

    Google Scholar 

  29. Zhang, Y., Chen, Z. T., & Ning, T. (2016). Efficient measurement of aero-engine blade considering uncertainties in adaptive machining. The International Journal of Advanced Manufacturing Technology,86, 387–396. https://doi.org/10.1007/s00170-015-8155-2.

    Article  Google Scholar 

  30. Yao, N. X. (1996). Optimum profiling for complicated curved surface. Dalian: Dalian University of Technology Press.

    Google Scholar 

  31. Liu, S. H., & Ma, H. (2015). Parameterization of modeling the aero-turbine blade based on CATIA. Ordnance Industry Automation,34(4), 56–59.

    Google Scholar 

  32. Yu, K. H., & Wang, J. S. (2011). Multidisciplinary design optimization of cooling turbine blade profiles based on surrogate model. Journal of Mechanical Engineering,47(10), 106–111.

    Article  Google Scholar 

  33. Zhong, Z. K., Hao, Y. H., & Huang, Z. J. (2016). Parametric design method of air-cooled turbine blade structure with variable thickness. Aeroengine,42(1), 48–51.

    Google Scholar 

  34. Yu, K. H., Li, L. Z., & Yue, Z. F. (2007). Parametric design for cooling turbine blades based on analytic and feature modeling. Journal of Propulsion Technology,28(6), 637–640.

    Google Scholar 

  35. Zheng, Y. Q., Zhao, R. Z., & Liu, H. (2014). Optimization method for girder of wind turbine blade. Mathematical Problems in Engineering (pp. 1–5). http://dx.doi.org/10.1155/2014/898736.

  36. Fu, Y. J., Wang, Y. L., Wan, M. T., & Wang, W. (2013). Three-dimensional profile measurement of the blade based on surface structured light. Optik,124, 3225–3229. https://doi.org/10.1016/j.ijleo.2012.10.003.

    Article  Google Scholar 

  37. Gao, J., Folkes, J., Yilmaz, O., & Gindy, N. (2005). Investigation of a 3D non-contact measurement based blade repair integration system. Aircraft Engineering and Aerospace Technology,77, 34–41. https://doi.org/10.1108/00022660510576028.

    Article  Google Scholar 

Download references

Acknowledgements

This study was co-supported by the Key Project of National Natural Science Foundation of China (No. 51635001) and the Innovation Ability Promotion Plan Project of Education Commission of Beijing (No. TSJHG201310005004).

Author information

Authors and Affiliations

Authors

Contributions

Z-YS and X-ZL have proposed a high-precision and form-free method for blade profile metrology based on “Synchronization of Planning and Measurement” and “Parametric Modeling”, the operational principle, key technologies and evaluation methodology are analyzed, the software and hardware of the system are designed, the validation of technical scheme is verified, and the manuscript is written. Y-KL has offered help for the experiment, data processing and simulations. J-CL has proposed the revising suggestions of manuscript.

Corresponding authors

Correspondence to Zhao-Yao Shi or Xue-Zhe Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, ZY., Li, XZ., Li, YK. et al. A High-Precision Form-Free Metrological Method of Aeroengine Blades. Int. J. Precis. Eng. Manuf. 20, 2061–2076 (2019). https://doi.org/10.1007/s12541-019-00227-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00227-5

Keywords

Navigation