Skip to main content
Log in

Hold Time-Low Cycle Fatigue Behavior of Nickel Based Hastelloy X at Elevated Temperatures

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Hastelloy X, a material used in gas turbines, is subject to complex damage because of creep and fatigue in a high temperature environment during the operation of gas turbines. Although the low cycle behavior of Hastelloy X has been widely investigated, the number of studies focusing on the actual operating conditions of the gas turbine is limited. In this study, the total strain range of the gas turbine at 760 °C and 870 °C was considered as a parameter of the actual gas turbine operation. In addition, tests were performed with a trapezoidal waveform of the total strain to reflect the operation—stop status of the gas turbine with frequent shutdown times. The results of the fatigue test were studied with the Coffin-Manson method and the lifetime prediction equation was derived based on the data. Fractography was performed using scanning electron microscopy (SEM) observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

εe :

Elastic strain range

εp :

Plastic strain range

εt :

Total strain range

\(\varepsilon_{f}^{\prime }\) :

Fatigue-ductility coefficient

c:

Fatigue-ductility exponent

\(\sigma_{f}^{\prime }\) :

Fatigue-strength coefficient

b:

Fatigue-strength exponent

\(\Delta W_{T}\) :

Tensile-hysteresis energy

\(\sigma_{T}\) :

Maximum tensile stress

\(\Delta \varepsilon_{in}\) :

Inelastic strain range

n′:

Cyclic-strain-hardening exponent

\(\Delta \sigma /2\) :

Stress amplitude at half-life

\(\Delta \varepsilon_{p} /2\) :

Plastic strain amplitude at half-life

K′:

Cyclic-strength coefficient

N f :

Number of fatigue cycles to failure

References

  1. Tomkins, B. (1981). Creep and fatigue in high temperature alloys. Applied Science Publication.

  2. Runkle, J. C., & Pellous, R. M. (1978). Fatigue mechanisms. ASTM STP 675.

  3. Lu, Y. L., Chen, L. J., Wang, G. Y., Benson, M. L., & Liaw, P. K. (2004). Hold-time effects on low-cycle-fatigue behavior of hastelloy X superalloy at high temperatures. In 10th international symposium in superalloys (pp. 19–23).

  4. Kim, I. S., Choi, B. G., Jung, J. E., Do, J., & Jo, C. Y. (2015). Effect of microstructural characteristics on the low cycle fatigue behaviors of cast Ni-base superalloys. Materials Characterization, 106, 375–381.

    Article  Google Scholar 

  5. Klarstrom, D. L., & Lai, G. Y. (1988) Effects of aging on the LCF behavior of three solid-solution-strengthened superalloys. Superalloys (pp. 585–593).

  6. Lee, S. Y., Lu, Y. L., Liaw, P. K., Chen, L. J., Thompson, S. A., Blust, J. W., et al. (2009). Tensile-hold low-cycle-fatigue properties of solid-solution-strengthened superalloys at elevated temperatures. Materials Science and Engineering A, 504, 64–72.

    Article  Google Scholar 

  7. Guo, B., Zhang, W., Li, S., & Wang, X. (2017). High temperature low cycle fatigue and creep-fatigue behavior of a casting Al-9Si-CuMg alloy used for cylinder heads. Materials Science and Engineering A, 700, 397–405.

    Article  Google Scholar 

  8. Shi, D., Liu, J., Yang, X., Qi, H., & Wang, J. (2010). Experimental investigation on low cycle fatigue and creep-fatigue interaction of DZ125 in different dwell time at elevated temperatures. Materials Science and Engineering A, 528, 233–238.

    Article  Google Scholar 

  9. Xiaoyan, W., Arnaud, D., Yaqing, H., & Sen, Y. (2016). Effect of thermomechanical processing on grain boundary character distribution of Hastelloy X alloy. Materials Science and Engineering A, 669, 95–102.

    Article  Google Scholar 

  10. ASTM E606/E606M-12. (2012). Standard test method for strain-controlled fatigue testing. ASTM International.

  11. Grant, T. S., Dannemann, K., Chan, K. S., & Leverant, G. R. (1998). Blade life management system for GE frame 6B gas turbines. EPRI Palo Alto, CA and KEMA Nederland B.V.:, Report TR-109196-V2.

  12. Ahmed, R., Barrett, P. R., & Hassan, T. (2016). Unified viscoplasticity modeling for isothermal low-cycle fatigue and fatigue-creep stress–strain responses of Haynes 230. International Journal of Solids and Structures, 88, 131–145.

    Article  Google Scholar 

  13. Barrett, P., Ahmed, R., Menon, M., & Hassan, T. (2016). Isothermal low-cycle fatigue and fatigue-creep of Haynes 230. International Journal of Solids and Structures, 88, 146–164.

    Article  Google Scholar 

  14. Gordon, A. P., Williams, E. P., & Schulist, M. (2008). Applicability of Neuber’s rule for thermomechanical fatigue. In ASME turbo expo 2008: Power for land, sea, and air. American Society of Mechanical Engineers.

  15. Chen, X., Yang, Z., Sokolov, M. A., Erdman, D. L., III, Mo, K., & Stubbins, J. F. (2013). Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C. Materials Science and Engineering A, 563, 152–162.

    Article  Google Scholar 

  16. HAYNES International. (1997). Hastelloy® x alloy—Haynes International AG.

  17. Strizak, J. P., Brinkman, C. R., & Rittenhouse, P. L. (1981). High-temperature low-cycle fatigue and tensile properties of Hastelloy X and alloy 617 in air and HTGR HELIUM. Oak Ridge National Lab., TN (USA), No. CONF-810530-4.

  18. Hiroshige, S., Iseki, T., & Shoda, Y. (1977). High-temperature low-cycle fatigue tests on Hastelloy X. Journal of Nuclear Science and Technology, 14, 381–386.

    Article  Google Scholar 

  19. Kim, D. W., Han, C. H., & Lee, B. S. (2009). Increase of low cycle fatigue life at 300°C for type 304 stainless steel. Korean Journal of Metals and Materials, 47, 391–396.

    Article  Google Scholar 

  20. Michael, G. C., Robert, V. M., & David, N. R. (1993). Thermomechanical deformation behavior of a dynamic strain aging alloy, Hastelloy X. Thermomechanical Fatigue Behavior of Materials, ASTM STP, 1186, 106–125.

    Google Scholar 

  21. Lee, K. O., Yoon, S., Hong, S. G., Kim, B. S., & Lee, S. B. (2004). Low cycle fatigue behavior of 429EM stainless steel at elevated temperature. Transactions of the Korean Society of Mechanical Engineers A, 28, 427–434.

    Article  Google Scholar 

  22. Lu, Y. L., Liaw, P. K., Chen, L. J., Wang, G. Y., Benson, M. L., Thompson, S. A., et al. (2006). Tensile-hold effects on high-temperature fatigue-crack growth in nickel-based HASTELLOY X alloy. Materials Science and Engineering A, 433, 114–120.

    Article  Google Scholar 

  23. Chen, G., Zhang, Y., Xu, D. K., Lin, Y. C., & Chen, X. (2016). Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650°C. Materials Science and Engineering A, 655, 175–182.

    Article  Google Scholar 

  24. Wang, M., Pang, J. C., Li, S. X., & Zhang, Z. F. (2017). Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature. Materials Science and Engineering A, 704, 480–492.

    Article  Google Scholar 

  25. Tawancy, H. M. (1983). Long-term ageing characteristics of Hastelloy alloy X. Journal of Materials Science, 18, 2976–2986.

    Article  Google Scholar 

  26. Ostergren, W. J. (1976). A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature low cycle fatigue. Journal of Testing and Evaluation, 4, 327–339.

    Article  Google Scholar 

  27. Polhemus, J. F., Spaeth, C. E., & Vogel., W. H. (1973). Ductility exhaustion model for prediction of thermal fatigue and creep interaction. Fatigue at elevated temperatures. ASTM International.

  28. Zhu, S. P., Huang, H. Z., Li, H., Sun, R., & Zuo, M. J. (2011). A new ductility exhaustion model for high temperature low cycle fatigue life prediction of turbine disk alloys. International Journal of Turbo and Jet Engines, 28(2), 119–131.

    Article  Google Scholar 

  29. Zhu, S. P., Huang, H. Z., Liu, Y., Yuan, R., & He, L. (2013). An efficient life prediction methodology for low cycle fatigue–creep based on ductility exhaustion theory. International Journal of Damage Mechanics, 22(4), 556–571.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Electric Power Corporation Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, D., Heo, I., Kim, J. et al. Hold Time-Low Cycle Fatigue Behavior of Nickel Based Hastelloy X at Elevated Temperatures. Int. J. Precis. Eng. Manuf. 20, 147–157 (2019). https://doi.org/10.1007/s12541-019-00025-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00025-z

Keywords

Navigation