Skip to main content
Log in

Adaptive tracking control of a quadrotor unmanned vehicle

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The design of a flight control system for an under-actuated quadrotor aircraft in presence of parametric uncertainties and external disturbance is quite challenging. In this study, we propose an adaptive trajectory tracking control base on sliding mode approach, an adaptive command filtered backstepping technique to stabilize the attitude of the quadrotor and using online estimators to estimate unknown aerodynamic parameters and external disturbances. First of all, the mathematical model of a quadrotor unmanned aerial vehicle (UAV) is presented. The adaptive tracking trajectory position and attitude control scheme are then formulated and the perturbations in quadrotor system are compensated by employing special Lyapunov functions. Simulation results are given to demonstrate the validity and effectiveness of the proposed algorithm on a quadrotor model under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dierks, T. and Jagannathan, S., “Output Feedback Control of a Quadrotor UAV using Neural Networks,” IEEE Transactions on Neural Networks, Vol. 21, No. 1, pp. 50–66, 2010.

    Article  Google Scholar 

  2. Pounds, P., Mahony, R., and Corke, P., “Modelling and Control of a Quad-Rotor Robot,” Proc. of Australasian Conference on Robotics and Automation, 2006.

    Google Scholar 

  3. Hoffmann, G. M., Waslander, S. L., and Tomlin, C. J., “Quadrotor Helicopter Trajectory Tracking Control,” Proc. of AIAA Guidance, Navigation and Control Conference and Exhibit, Paper No. AIAA 2008-7410, 2008.

    Google Scholar 

  4. Bouabdallah, S. and Siegwart, R., “Towards Intelligent Miniature Flying Robots,” in: Field and Service Robotics, Corke, P., Sukkariah, S., (Eds.), Springer, pp. 429–440, 2006.

    Chapter  Google Scholar 

  5. Slotine, J. E. and Li, W., “Applied Nonlinear Control,” Prentice Hall, 1991.

    MATH  Google Scholar 

  6. Dinh, T. X., Nam, D. N. C., and Ahn, K. K., “Robust Attitude Control and Virtual Reality Model for Quadrotor,” International Journal of Automation Technology, Vol. 9, No. 3, pp. 283–290, 2015.

    Article  Google Scholar 

  7. Ahn, K. K., Truong, D. Q., and Islam, M. A., “Modeling of a Magneto-Rheological (MR) Fluid Damper using a Self Tuning Fuzzy Mechanism,” Journal of Mechanical Science and Technology, Vol. 23, No. 5, pp. 1485–1499, 2009.

    Article  Google Scholar 

  8. Anh, H. P. H. and Ahn, K. K., “Hybrid Control of a Pneumatic Artificial Muscle (PAM) Robot Arm using an Inverse NARX Fuzzy Model,” Engineering Application of Artificial Intelligence, Vol. 24, No. 4, pp. 697–716, 2011.

    Article  Google Scholar 

  9. Danh, L. T. and Ahn, K. K., “Experimental Investigation of a Vibration Isolation System using Negative Stiffness Structure,” International Journal of Mechanical Sciences, Vol. 70, pp. 99–112, 2013.

    Article  Google Scholar 

  10. Madani, T. and Benallegue, A., “Sliding Mode Observer and Backstepping Control for a Quadrotor Unmanned Aerial Vehicles,” Proc. of American Control Conference, pp. 5887–5892, 2007.

    Google Scholar 

  11. Guenard, N., Hamel, T., and Moreau, V., “Dynamic Modeling and Intuitive Control Strategy for an “X4-Flyer”,” Proc. of International Conference on Control and Automation, pp. 141–146, 2005.

    Google Scholar 

  12. Kendoul, F., Lara, D., Fantoni, I., and Lozano, R., “Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4, pp. 1049–1061, 2007.

    Article  Google Scholar 

  13. Zuo, Z., “Trajectory Tracking Control Design with Command-Filtered Compensation for a Quadrotor,” IET Control Theory & Applications, Vol. 4, No. 11, pp. 2343–2355, 2010.

    Article  MathSciNet  Google Scholar 

  14. Benallegue, A., Mokhtari, A., and Fridman, L., “High-Order Sliding-Mode Observer for a Quadrotor UAV,” International Journal of Robust and Nonlinear Control, Vol. 18, Nos. 4-5, pp. 427–440, 2008.

    Google Scholar 

  15. Xu, R. and Özgüner, Ü., “Sliding Mode Control of a Class of Underactuated Systems,” Automatica, Vol. 44, No. 1, pp. 233–241, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zheng, E.-H., Xiong, J.-J., and Luo, J.-L., “Second Order Sliding Mode Control for a Quadrotor UAV,” ISA Transactions, Vol. 53, No. 4, pp. 1350–1356, 2014.

    Article  Google Scholar 

  17. Raffo, G. V., Ortega, M. G., and Rubio, F. R., “Nonlinear H∞ Controller for the Quad-Rotor Helicopter with Input Coupling,” IFAC Proceedings Volumes, Vol. 44, No. 1, pp. 13834–13839, 2011.

    Article  Google Scholar 

  18. Leitner, J., Calise, A., and R. Prasad, J., “Analysis of Adaptive Neural Networks for Helicopter Flight Control,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 5, pp. 972–979, 1997.

    Article  MATH  Google Scholar 

  19. Roberts, A. and Tayebi, A., “Adaptive Position Tracking of VTOL UAVs,” IEEE Transactions on Robotics, Vol. 27, No. 1, pp. 129–142, 2011.

    Article  Google Scholar 

  20. Zuo, Z., “Adaptive Trajectory Tracking Control Design with Command Filtered Compensation for a Quadrotor,” Journal of Vibration and Control, Vol. 19, No. 1, pp. 94–108, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  21. Castillo, P., Dzul, A., and Lozano, R., “Real-Time Stabilization and Tracking of a Four-Rotor Mini Rotorcraft,” IEEE Transactions on Control Systems Technology, Vol. 12, No. 4, pp. 510–516, 2004.

    Article  Google Scholar 

  22. Choi, I.-H. and Bang, H.-C., “Adaptive Command Filtered Backstepping Tracking Controller Design for Quadrotor Unmanned Aerial Vehicle,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 226, No. 5, pp. 483–497, 2012.

    Article  Google Scholar 

  23. Han, J., “From PID to Active Disturbance Rejection Control,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 3, pp. 900–906, 2009.

    Article  Google Scholar 

  24. Bresciani, T., “Modelling, Identification and Control of a Quadrotor Helicopter,” M.Sc. Thesis, Department of Automatic Control, LUND University, 2008.

    Google Scholar 

  25. Gautam, D. and Ha, C., “Control of a Quadrotor using a Smart Self-Tuning Fuzzy PID Controller,” International Journal of Advanced Robotic Systems, Vol. 10, 2013. (DOI: 10.5772/56911)

    Google Scholar 

  26. Tran, X.-T. and Kang, H.-J., “Adaptive Hybrid High-Order Terminal Sliding Mode Control of MIMO Uncertain Nonlinear Systems and Its Application to Robot Manipulators,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 255–266, 2015.

    Article  Google Scholar 

  27. Tran, X.-T. and Kang, H.-J., “Adaptive Hybrid High-Order Terminal Sliding Mode Control of MIMO Uncertain Nonlinear Systems and Its Application to Robot Manipulators,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 255–266, 2015.

    Article  Google Scholar 

  28. Vista IV, F. P., Singh, A. M., Lee, D.-J., and Chong, K. T., “Design Convergent Dynamic Window Approach for Quadrotor Navigation,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 10, pp. 2177–2184, 2014.

    Article  Google Scholar 

  29. Bouabdallah, S., “Design and Control of Quadrotors with Application to Autonomous Flying,” Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, 2007.

    Google Scholar 

  30. Bouabdallah, S. and Siegwart, R., “Backstepping and Sliding-Mode Techniques Applied TO An Indoor Micro Quadrotor,” Proc. of the IEEE International Conference on Robotics and Automation, pp. 2247–2252, 2005.

    Google Scholar 

  31. Bouabdallah, S. and Siegwart, R., “Full Control of a Quadrotor,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 153–158, 2007.

    Google Scholar 

  32. Lee, T., Leok, M., and McClamroch, N. H., “Nonlinear robust Tracking Control of a Quadrotor UAV on SE (3),” Asian Journal of Control, Vol. 15, No. 2, pp. 391–408, 2013.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Kwan Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, T.X., Ahn, K.K. Adaptive tracking control of a quadrotor unmanned vehicle. Int. J. Precis. Eng. Manuf. 18, 163–173 (2017). https://doi.org/10.1007/s12541-017-0022-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-017-0022-7

Keywords

Navigation