Skip to main content
Log in

Closed loop springback control in progressive die bending by induction heating

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Large springback of high strength steels in progressive dies hinders accurate manufacturing because a proper prediction of elastic unloading is not possible due to material variations, tool wear, and varying ambient conditions. In order to compensate springback and enhance the forming limit when brittle materials are bent, a warm bending technology for progressive dies through inline induction heating is developed. Within a certain temperature range, there is a linear relation to the springback angle, which allows a direct influence on the final bending angle. Based on this principle, a closed loop control with a feedback of the angle after unloading is implemented, which adjusts the sheet temperature before bending. With the developed discrete controller, finally a stable and fast control mode is achieved so that an initial deviation from the target value is reduced to less than Δθ = ±0.30°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Settling cycles

d :

Damping factor

e :

Error

f :

Frequency

f s :

Stroke rate

n :

Number of dead cycles

T :

Temperature

v r :

Stroke velocity

θ :

Bending angle

θ n :

Nominal angle

Θ :

Springback angle

References

  1. Keeler, S. and Kimchi, M., “Advanced High-Strength Steels Application Guidelines Version 5.0.” WorldAutoSteel, pp. 2-1-2-15, 2014.

    Google Scholar 

  2. Wagoner, R. H., Lim, H., and Lee, M.-G., “Advanced Issues in Springback,” International Journal of Plasticity, Vol. 45, pp. 3–20, 2013.

    Article  Google Scholar 

  3. West, J. S., “Adaptive Stroke Reversal Control in Brakeforming,” M.Sc. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, 1980.

    Google Scholar 

  4. Pourboghrat, F. and Stelson, K. A., “Pressbrake Bending in the Punch-Sheet Contact Region-Part 1: Modeling Nonuniformities,” Journal of Manufacturing Science and Engineering, Vol. 110, No. 2, pp. 124–130, 1988.

    Google Scholar 

  5. Kwok, S. K. and Lee, W. B., “The Design of an Intelligent Bending Machine,,” Proc. of International Conference on Manufacturing Automation, pp. 601–606, 1992.

    Google Scholar 

  6. Anokye-Siribor, K. and Singh, U. P., “A New Analytical Model for Pressbrake Forming using In-Process Identification of Material Characteristics,” Journal of Materials Processing Technology, Vol. 99, No. 1, pp. 103–112, 2000.

    Article  Google Scholar 

  7. Gerritsen, G., “Method for Controlling the Stroke of a Press Brake,” EP Patent, 1120176A1, 2001.

    Google Scholar 

  8. Ridane, N., “FEM-Gestützte Prozessregelung des Freibiegens,” Shaker, pp. 24–38, 2008.

    Google Scholar 

  9. Welo, T. and Granly, B., “A New Adaptive Bending Method using Closed Loop Feedback Control,” Transactions of Nonferrous Metals Society of China, Vol. 20, No. 11, pp. 2111–2117, 2010.

    Article  Google Scholar 

  10. Groche, P., Beiter, P., and Henkelmann, M., “Prediction and Inline Compensation of Springback in Roll Forming of High and Ultra-High Strength Steels,” Production Engineering, Vol. 2, No. 4, pp. 401–407, 2008.

    Article  Google Scholar 

  11. Neugebauer, R., Altan, T., Geiger, M., Kleiner, M., and Sterzing, A., “Sheet Metal Forming at Elevated Temperatures,” CIRP Annals-Manufacturing Technology, Vol. 55, No. 2, pp. 793–816, 2006.

    Article  Google Scholar 

  12. Bammer, F., Schumi, T., and Schuöcker, D., “Some Aspects of Laser-Assisted Bending,” Proc. of International Conference on Technology of Plasticity, 2011.

    Google Scholar 

  13. Yanagimoto, J. and Oyamada, K., “Mechanism of Springback-Free Bending of High-Strength Steel Sheets under Warm Forming Conditions,” CIRP Annals-Manufacturing Technology, Vol. 56, No. 1, pp. 265–268, 2007.

    Article  Google Scholar 

  14. Löbbe, C., Becker, C., and Tekkaya, A. E., “Warm Bending of Microalloyed High-Strength Steel by Local Induction Heating,” Proc. of 7th Forming Technology Forum, pp. 99–104, 2014.

    Google Scholar 

  15. Lange, K. and Liewald, M., “Umformtechnik: Handbuch für Industrie und Wissenschaft-Band 3: Blechbearbeitung,” Springer, pp. 271–275, 1990.

    Google Scholar 

  16. Smith, O. J. M., “A Controller to Overcome Dead Time,” ISA Journal, Vol. 6, No. 2, pp. 28–33, 1959.

    Google Scholar 

  17. Fait, J., “Technologische Grundlagenuntersuchungen zur Erhöhung der Flexibilität des Schwenkbiegens,” VDI-Verlag, p. 32, 1990.

    Google Scholar 

  18. Rothstein, R., “Einsatz der Prozeßsimulation zur Analyse und Weiterentwicklung von Gesenkbiegeverfahren,” VDI-Verlag, pp. 80–84, 1990.

    Google Scholar 

  19. Müller-Duysing, M., “Die Berechnung und Adaptive Steuerung des Drei-Punkt-Biegens,” Ph.D. Thesis, Eidgenössische Technische Hochschule Zürich, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Löbbe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Löbbe, C., Hoppe, C., Becker, C. et al. Closed loop springback control in progressive die bending by induction heating. Int. J. Precis. Eng. Manuf. 16, 2441–2449 (2015). https://doi.org/10.1007/s12541-015-0314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0314-8

Keywords

Navigation