Skip to main content
Log in

Microstructure and Mechanical Property of Zr/316L Brazed Joints by Zr–Cu–Fe Amorphous Filler

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Vacuum brazing of Zr and 316 stainless steels (316L) was conducted using a Zr74Cu13Fe13 (at%) amorphous filler. A comprehensive investigation was carried out to examine the interfacial microstructure and mechanical properties of Zr/316L joints under varying brazing temperatures and extended holding times. The reaction products in Zr/316L joints brazed at 980 °C for 10 min consisted of Zr2Fe + Zrss/Zr(Fe,Cr)2 + (Zr,Cu)/α-(Fe,Cr). As the temperature increased and the duration of holding was extended, both Zr(Fe,Cr)2 and α-(Fe,Cr) layers adjacent to 316L thickened. Particularly, the growth kinetics analysis of the diffusion zone revealed that the growth coefficient of Zr(Cr,Fe)2 and α-(Fe,Cr) were 0.0291 μm2/s and 0.0058 μm2/s, respectively, indicating that Zr(Cr,Fe)2 exhibited a higher thickening rate than α-(Fe,Cr). The shear strength of Zr/316L joints initially increased and then deteriorated with higher brazing temperatures or longer holding times. The Zr/Zr–Cu–Fe/316L joints achieved a maximum strength of 93.5 MPa at a brazing parameter of 980 °C/15 min. Additionally, the joints initially failed at the interface of Zr(Fe,Cr)2/316L, with cracks propagating along the brittle Zr2Fe phase within the brazing seam.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Fattah-Alhosseini, R. Chaharmahali, M.K. Keshavarz, K. Babaei, Surf. Interfaces. 25, 101283 (2021). https://doi.org/10.1016/j.surfin.2021.101283

    Article  CAS  Google Scholar 

  2. Y. Zheng, W. Liu, Z.Y. Su, Z.H. Zhao, G.C. Ren, W. Niu, Z.Y. Yu, L.B. Zang, Z.Z. Yu, Mater. Charact. 199, 112826 (2023). https://doi.org/10.1016/j.matchar.2023.112826

  3. W.S. Jeon, A. Sharma, J.P. Jung, Metals 10, 787 (2020). https://doi.org/10.3390/met10060787

  4. S.S. Guo, L.B. Sun, J. Fang, J. Zhang, Z. Zheng, C.F. Liu, Y. Wen, T.P. Shan, Mater. Charact. 193, 112270 (2022). https://doi.org/10.1016/j.matchar.2022.112270

  5. Y. Gao, K. Zhang, C. Zhang, Y. Wang, W. Chen, Metals 13, 1475 (2023). https://doi.org/10.3390/met13081475

  6. J. Ning, L.J. Zhang, M.X. Xie, H.X. Yang, X.Q. Yin, J.X. Zhang, J. Alloy. Compd. 698, 835–851 (2017). https://doi.org/10.1016/j.jallcom.2016.12.213

    Article  CAS  Google Scholar 

  7. M. Slobodyan, Nucl. Eng. Technol. 53, 1049–1078 (2021). https://doi.org/10.1016/j.net.2020.10.005

    Article  CAS  Google Scholar 

  8. Y. Zheng, G. Ren, L. Li, Mater. Lett. 348, 134710 (2023). https://doi.org/10.1016/j.matlet.2023.134710

  9. M.S. Slobodyan, Prog. Nucl. Energ. 133, 103630 (2021). https://doi.org/10.1016/j.pnucene.2021.103630

    Article  CAS  Google Scholar 

  10. S. Zeng et al., J. Mater. Res. Technol. 18, 2699–2710 (2022). https://doi.org/10.1016/j.jmrt.2022.03.157

    Article  CAS  Google Scholar 

  11. H.T. Xu, L. Shi, C. Lu, H. Li, Y. He, W. Chen, Z. Gao, Mater. Charact. 179, 111368 (2021). https://doi.org/10.1016/j.matchar.2021.111368

  12. W.L. Wang, D.Y. Fan, J.H. Huang, C.L. Li, J. Yang, S.H. Chen, Mat. Sci. Eng. A 728, 1–9 (2018). https://doi.org/10.1016/j.msea.2018.04.091

  13. D.Y. Lin, J.X. Hu, X. Xi, Z. Liu, J.Q. Wen, Z.P. Wang, X.G. Song, H. Bian, Z.X. Tang, W. Fu, S.P. Hu, Mater. Chem. Phys. 295, 127079 (2023). https://doi.org/10.1016/j.matchemphys.2022.127079

    Article  CAS  Google Scholar 

  14. C.H. Lee, R.K. Shiue, J. Mater. Sci. Technol. 29, 283–286 (2013). https://doi.org/10.1016/j.jmst.2013.01.010

    Article  CAS  Google Scholar 

  15. Y.J. Jing, X.S. Yue, X.Q. Gao, Mat. Sci. Eng. A 678, 190–196 (2016). https://doi.org/10.1016/j.msea.2016.09.115

  16. Y.Q. Xia, H.G. Dong, X.H. Hao, P. Li, S. Li, J. Mater. Process. Tech. 269, 35–44 (2019). https://doi.org/10.1016/j.jmatprotec.2019.01.020

    Article  CAS  Google Scholar 

  17. K.H. Kim, C.H. Lim, J.G. Lee, M.K. Lee, C.K. Rhee, J. Nucl. Mater. 441, 59–66 (2013). https://doi.org/10.1016/j.jnucmat.2013.05.029

    Article  CAS  Google Scholar 

  18. J.G. Lee, M.K. Lee, Mater. Des. 65, 265–271 (2015). https://doi.org/10.1016/j.matdes.2014.09.009

    Article  CAS  Google Scholar 

  19. J.G. Lee, G.J. Lee, J.J. Park, M.K. Lee, J. Nucl. Mater. 488, 204–209 (2017). https://doi.org/10.1016/j.jnucmat.2017.03.020

    Article  CAS  Google Scholar 

  20. Y.Q. Xia, H.G. Dong, P. Li, J. Alloy. Compd. 849, 156650 (2020). https://doi.org/10.1016/j.jallcom.2020.156650

    Article  CAS  Google Scholar 

  21. H.S. Chen, C.S. Long, T.G. Wei, W. Gao, H.X. Xiao, Mater. Des. 60, 358–362 (2014). https://doi.org/10.1016/j.matdes.2014.03.055

    Article  CAS  Google Scholar 

  22. S. Li, Z.Y. Liu, Y.Q. Xia, X.X. Wang, P. He, Y.T. Jiu, L.H. Jia, W.M. Long, J. Manuf. Process. 70, 484–493 (2021). https://doi.org/10.1016/j.jmapro.2021.09.001

    Article  Google Scholar 

  23. Y.Q. Xia, P. Li, X.H. Hao, H.G. Dong, J. Manuf. Process. 35, 382–395 (2018). https://doi.org/10.1016/j.jmapro.2018.08.022

  24. D. Aboudi, S. Lebaili, M. Taouinet, J. Zollinger, Mater. Design. 116, 386–394 (2017). https://doi.org/10.1016/j.matdes.2016.12.008

    Article  CAS  Google Scholar 

  25. H.S. Chen, C.S. Long, T.G. Wei, W. Gao, H.X. Xiao, L. Chen, Mater. Des. 60, 358–362 (2014). https://doi.org/10.1016/j.matdes.2014.03.055

    Article  CAS  Google Scholar 

  26. Z.W. Yang, F. Zhang, X. Yang, Y. Wang, D.P. Wang, Adv. Eng. Mater. 25, 2300279 (2023). https://doi.org/10.1002/adem.202300279

  27. L. Li, X.Q. Li, K. Hu, S.G. Qu, C. Yang, Z.F. Li, Mat. Sci. Eng. A 634, 91–98 (2015). https://doi.org/10.1016/j.msea.2015.03.039

  28. A. Sharma, B. Ahn, Sci. Rep. 11, 9345 (2021). https://doi.org/10.1038/s41598-021-87705-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y.Q. Xia, H.G. Dong, R.Z. Zhang, Y.Q. Wang, X.H. Hao, P. Li, C. Dong, Mater. Des. 187, 108380 (2020). https://doi.org/10.1016/j.matdes.2019.108380

    Article  CAS  Google Scholar 

  30. S.H. Zhou, R.E. Napolitano, Acta Mater. 5, 2186–2196 (2010). https://doi.org/10.1016/j.actamat.2009.12.004

    Article  CAS  Google Scholar 

  31. K.A. Terrani, C.M. Parish, D. Shin, B.A. Pint, J. Nucl. Mater. 438, 64–71 (2013). https://doi.org/10.1016/j.jnucmat.2013.03.006

    Article  CAS  Google Scholar 

  32. H. Wang, Z. Wang, G. Chen, L.B. Ren, T.B. Tan, Y.Y. Guo, Y. Liu, H.H. Pan, Mater. Lett. 324, 132652 (2022). https://doi.org/10.1016/j.matlet.2022.132652

    Article  CAS  Google Scholar 

  33. Q. Qi, J. Zhang, C.J. Lu, Q. Zhang, Y.H. Xuan, M.X. Liu, Prog. Nat. Sci. Nat. Sci. 28, 378–385 (2018). https://doi.org/10.1016/j.pnsc.2018.04.006

    Article  CAS  Google Scholar 

  34. Z.Y. Luo, G. Wang, Y. Zhao, C.W. Tan, R.J. He, Ceram. Int. 48, 23325 (2022). https://doi.org/10.1016/j.ceramint.2022.04.320

    Article  CAS  Google Scholar 

  35. K.K. Pandey, V.I. Levitas, Acta Mater. 196, 338–346 (2020). https://doi.org/10.1016/j.actamat.2020.06.015

    Article  CAS  Google Scholar 

  36. T.P. Wang, J. Zhang, W.J. Lee, T. Ivas, L. Christian, Simul. Model. Pract. Theory 95, 49–59 (2019). https://doi.org/10.1016/j.simpat.2019.04.007

    Article  Google Scholar 

  37. R. Haque, A. Olofinjana, B. Imasogie, Adv. Mater. Sci. Eng. 47, 1250154 (2020). https://doi.org/10.1155/2020/1250154

  38. N. Jiang, H. Bian, J.C. Li, X.G. Song, Y.Z. Lei, W.M. Long, H.W. Niu, Y.Y. Pei, Vacuum 206, 111537 (2022). https://doi.org/10.1016/j.vacuum.2022.111537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52275321 and 52205348), Shandong Natural Science Foundation (Grant: ZR2023JQ021), the Taishan Scholars Foundation of Shandong Province (NO. tsqn201812128), Innovation Scientists and Technicians Troop Projects of Henan Province (204200510031) and Heilongjiang Touyan Innovation Team Program (No. HITTY-20190013). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054). And the authors also thank Li Yingchun from Shiyanjia Lab (www.shiyanjia.com) for the XRD test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, H., Jiang, N., Lin, D. et al. Microstructure and Mechanical Property of Zr/316L Brazed Joints by Zr–Cu–Fe Amorphous Filler. Met. Mater. Int. 30, 1624–1634 (2024). https://doi.org/10.1007/s12540-023-01593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01593-6

Keywords

Navigation