Skip to main content
Log in

Plasma Dynamic Synthesis of Dispersed Cu/SiC Composites with a Controlled Phase Composition

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Obtaining bulk copper-based composite materials with improved physical and mechanical properties often requires pre-treatment of the initial raw materials. Especially it concerns metal matrix composites (MMC) containing copper as a matrix and silicon carbide as a reinforcing component. However, the final properties of Cu/SiC MMC depend on successful solving the problem of silicon solubility in liquid-phase copper during the sintering process. In this work, we demonstrate the possibility of high-energy treatment of copper and silicon carbide by the plasma dynamic method to obtain a pre-activated charge for further sintering. Analytical studies by X-ray diffractomtery (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) methods testify to the possibility of obtaining highly dispersed composite Cu/SiC materials of different phase and grain size composition depending on the synthesis conditions. The application of polymodal Cu/SiC powders pre-activated by the plasma dynamic method as a charge is established to ensure producing bulk samples by the spark plasma sintering (SPS) method and allow increasing the relative density by ~ 5%–10% and the hardness of the final products by more than 30% compared with pure copper samples produced by the same method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the Russian Federation legislation in the field of materials published abroad but are available from the corresponding author on reasonable request.

References

  1. I. Pranoto, M.A. Rahman, P.A.P. Mahardhika, Pool boiling heat transfer performance and bubble dynamics from pin fin-modified surfaces with geometrical shape variation. Energies 15, 1847 (2022). https://doi.org/10.3390/en15051847

    Article  CAS  Google Scholar 

  2. B.L. Rakshith, L.G. Asirvatham, A.A. Angeline, S. Manova, J.R. Bose, J.P. Selvin Raj, O. Mahian, S. Wongwises, Cooling of high heat flux miniaturized electronic devices using thermal ground plane: an overview. Renew. Sustain. Energy Rev. 170, 112956 (2022). https://doi.org/10.1016/j.rser.2022.112956

    Article  Google Scholar 

  3. Z. He, Y. Yan, Z. Zhang, Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review. Energy 216, 119223 (2021). https://doi.org/10.1016/j.energy.2020.119223

    Article  Google Scholar 

  4. E.M. Abo-Zahhad, S. Ookawara, A. Radwan, M.F. Elkady, A.H. El-Shazly, Optimization of stepwise varying width microchannel heat sink for high heat flux applications. Case Stud. Therm. Eng. 18, 100587 (2020). https://doi.org/10.1016/j.csite.2020.100587

    Article  Google Scholar 

  5. X. Yuan, Y. Du, J. Su, Approaches and potentials for pool boiling enhancement with superhigh heat flux on responsive smart surfaces: a critical review. Renew. Sustain. Energy. Rev 156, 111974 (2022). https://doi.org/10.1016/J.RSER.2021.111974

    Article  CAS  Google Scholar 

  6. M. Egbo, A review of the thermal performance of vapor chambers and heat sinks: Critical heat flux, thermal resistances, and surface temperatures. Int. J. Heat Mass Transf. 183, 122108 (2022). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.122108

    Article  CAS  Google Scholar 

  7. H. Asgari, M. Salarian, H. Ma, A. Olubamiji, M. Vlasea, On thermal expansion behavior of invar alloy fabricated by modulated laser powder bed fusion. Mater. Des. 160, 895–905 (2018). https://doi.org/10.1016/J.MATDES.2018.10.025

    Article  CAS  Google Scholar 

  8. H. Yang, L. Ma, 1D to 3D multi-stable architected materials with zero Poisson’s ratio and controllable thermal expansion. Mater. Des. 188, 108430 (2020). https://doi.org/10.1016/J.MATDES.2019.108430

    Article  Google Scholar 

  9. J. Sheng, L.D. Wang, D. Li, W.P. Cao, Y. Feng, M. Wang, Z.Y. Yang, Y. Zhao, W.D. Fei, Thermal expansion behavior of copper matrix composite containing negative thermal expansion PbTiO3 particles. Mater. Des. 132, 442–447 (2017). https://doi.org/10.1016/J.MATDES.2017.06.061

    Article  CAS  Google Scholar 

  10. G. Sundberg, P. Paul, C. Sung, T. Vasilos, Identification and characterization of diffusion barriers for Cu/SiC systems. J. Mater. Sci. 40, 3383–3393 (2005). https://doi.org/10.1007/S10853-005-2847-1

    Article  ADS  CAS  Google Scholar 

  11. T. Schubert, B. Trindade, T. Weißgärber, B. Kieback, Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Mater. Sci. Eng. A 475, 39–44 (2008). https://doi.org/10.1016/J.MSEA.2006.12.146

    Article  Google Scholar 

  12. A. Brendel, V. Paffenholz, T. Köck, H. Bolt, Mechanical properties of SiC long fibre reinforced copper. J. Nucl. Mater. 386–388, 837–840 (2009). https://doi.org/10.1016/J.JNUCMAT.2008.12.251

    Article  ADS  Google Scholar 

  13. L. Dyachkova, E.E. Feldshtein, On the properties of composites based on sintered bronze with alumina additives. Compos. B Eng. 45, 239–247 (2013). https://doi.org/10.1016/J.COMPOSITESB.2012.07.024

    Article  CAS  Google Scholar 

  14. Y. Geng, Y. Ban, B. Wang, X. Li, K. Song, Y. Zhang, Y. Jia, B. Tian, Y. Liu, A.A. Volinsky, A review of microstructure and texture evolution with nanoscale precipitates for copper alloys. J. Market. Res. 9, 11918–11934 (2020). https://doi.org/10.1016/j.jmrt.2020.08.055

    Article  CAS  Google Scholar 

  15. Y. Ban, M. Zhou, Y. Zhang, Y. Jia, Y. Pang, Y. Li, S. Tang, X. Li, A.A. Volinsky, E.S. Marchenko, Abnormally high work hardening ability and excellent comprehensive properties of copper alloys due to multiple twins and precipitates. Mater. Des. 228, 111819 (2023). https://doi.org/10.1016/j.matdes.2023.111819

    Article  CAS  Google Scholar 

  16. W. Wu, S. Ye, R. Wang, C. Zhang, Y. Zhang, X. Lu, Microstructure and wear behavior of plasma cladded Ni-based alloy coating on copper under different preheating temperature. J. Market. Res. 23, 1609–1617 (2023). https://doi.org/10.1016/j.jmrt.2023.01.092

    Article  CAS  Google Scholar 

  17. Z. Wang, Z. Tang, L. Xu, Z. Han, J. Liu, L. Zhang, Thermal properties and thermal cycling stability of graphite/copper composite fabricated by microwave sintering. J. Market. Res. 20, 1352–1363 (2022). https://doi.org/10.1016/j.jmrt.2022.07.147

    Article  CAS  Google Scholar 

  18. Y. Zhou, Y. Liu, K. Song, S. Li, C. Feng, Q. Zhu, X. Peng, S. Yang, X. Li, P. Zhang, Mechanisms for high strength and ultra-high electrical conductivity of Cu-3.5wt%Ag alloy prepared by thermomechanical treatment. Mater. Today Commun. 33, 104819 (2022). https://doi.org/10.1016/j.mtcomm.2022.104819

    Article  CAS  Google Scholar 

  19. T. Thankachan, K.S. Prakash, V. Kavimani, Investigating the effects of hybrid reinforcement particles on the microstructural, mechanical and tribological properties of friction stir processed copper surface composites. Compos. B Eng. 174, 107057 (2019). https://doi.org/10.1016/J.COMPOSITESB.2019.107057

    Article  CAS  Google Scholar 

  20. F. Nazeer, Z. Ma, L. Gao, F. Wang, M.A. Khan, A. Malik, Thermal and mechanical properties of copper-graphite and copper-reduced graphene oxide composites. Compos. B Eng. 163, 77–85 (2019). https://doi.org/10.1016/J.COMPOSITESB.2018.11.004

    Article  CAS  Google Scholar 

  21. M.R. Akbarpour, H. Mousa Mirabad, S. Alipour, Microstructural and mechanical characteristics of hybrid SiC/Cu composites with nano- and micro-sized SiC particles. Ceram. Int. 45, 3276–3283 (2019). https://doi.org/10.1016/J.CERAMINT.2018.10.235

    Article  CAS  Google Scholar 

  22. R.A. Raimundo, F.A. Costa, M.A. Morales, A.G.P. Silva, U.U. Gomes, Effect of the high energy milling on the microstructure of Cu-20%WC composite powders prepared with recycled WC. Int. J. Refract. Metals Hard Mater. 90, 105223 (2020). https://doi.org/10.1016/j.ijrmhm.2020.105223

    Article  CAS  Google Scholar 

  23. M.I. Abd El Aal, H.S. Kim, Effect of the fabrication method on the wear properties of copper silicon carbide composites. Tribol. Int. 128, 140–154 (2018). https://doi.org/10.1016/j.triboint.2018.07.024

    Article  CAS  Google Scholar 

  24. G. Celebi Efe, M. Ipek, S. Zeytin, C. Bindal, An investigation of the effect of SiC particle size on Cu-SiC composites. Compos. B Eng. 43, 1813–1822 (2012). https://doi.org/10.1016/j.compositesb.2012.01.006

    Article  CAS  Google Scholar 

  25. G. Celebi Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin, C. Bindal, The effect of sintering temperature on some properties of Cu–SiC composite. J. Alloys. Compd. 509, 6036–6042 (2011). https://doi.org/10.1016/J.JALLCOM.2011.02.170

    Article  CAS  Google Scholar 

  26. H. Kumar, R. Prasad, P. Kumar, Effect of multi-groove reinforcement strategy on Cu/SiC surface composite fabricated by friction stir processing. Mater. Chem. Phys. 256, 123720 (2020). https://doi.org/10.1016/j.matchemphys.2020.123720

    Article  Google Scholar 

  27. S. Kumar, A. Yadav, V. Patel, B. Nahak, A. Kumar, Mechanical behaviour of SiC particulate reinforced Cu alloy based metal matrix composite. Mater. Today Proc. 41, 186–190 (2021). https://doi.org/10.1016/j.matpr.2020.08.580

    Article  Google Scholar 

  28. N.T. Câmara, R.A. Raimundo, C.S. Lourenço, L.M.F. Morais, D.D.S. Silva, R.M. Gomes, M.A. Morales, D.A. Macedo, U.U. Gomes, F.A. Costa, Impact of the SiC addition on the morphological, structural and mechanical properties of Cu-SiC composite powders prepared by high energy milling. Adv. Powder Technol. 32, 2950–2961 (2021). https://doi.org/10.1016/j.apt.2021.06.006

    Article  CAS  Google Scholar 

  29. A. Devaraju, P. Sivasamy, R. Gopi, A. Muthiah, Studies on wear behaviour of silicon carbide and fly ash reinforced copper based metal matrix composites. Mater. Today Proc. 39, 888–891 (2021). https://doi.org/10.1016/j.matpr.2020.10.1006

    Article  Google Scholar 

  30. Y. Xiong, W. Hu, Y. Shu, X. Luo, Z. Zhang, J. He, C. Yin, K. Zheng, Atomistic simulation on the generation of defects in Cu/SiC composites during cooling. J. Mater. Sci. Technol. 123, 1–12 (2022). https://doi.org/10.1016/j.jmst.2021.10.058

    Article  CAS  Google Scholar 

  31. K.E. Pappacena, M.T. Johnson, S. Xie, K.T. Faber, Processing of wood-derived copper-silicon carbide composites via electrodeposition. Compos. Sci. Technol. 70, 485–491 (2010). https://doi.org/10.1016/j.compscitech.2009.12.019

    Article  CAS  Google Scholar 

  32. C. Rado, B. Drevet, N. Eustathopoulos, The role of compound formation in reactive wetting: the Cu/SiC system. Acta Mater. 48, 4483–4491 (2000). https://doi.org/10.1016/S1359-6454(00)00235-4

    Article  ADS  CAS  Google Scholar 

  33. G. Sundberg, P. Paul, C. Sung, T. Vasilos, Fabrication of CuSiC metal matrix composites. J. Mater. Sci. 41, 485–504 (2006). https://doi.org/10.1007/s10853-005-2622-3

    Article  ADS  CAS  Google Scholar 

  34. K.E. Pappacena, M.T. Johnson, H. Wang, W.D. Porter, K.T. Faber, Thermal properties of wood-derived copper-silicon carbide composites fabricated via electrodeposition. Compos. Sci. Technol. 70, 478–484 (2010). https://doi.org/10.1016/j.compscitech.2009.11.011

    Article  CAS  Google Scholar 

  35. S.H. Kee, W.J. Kim, J.P. Jung, Copper-silicon carbide composite plating for inhibiting the extrusion of through silicon via (TSV). Microelectr. Eng. 214, 5–14 (2019). https://doi.org/10.1016/j.mee.2019.04.019

    Article  CAS  Google Scholar 

  36. S. Chatterjee, S. Chabri, H. Chakraborty, N. Bhowmik, A. Sinha, Micromechanical and nanoscratch behavior of SiCp dispersed metal matrix composites. J. Mater. Eng. Perf. 24, 3407–3418 (2015). https://doi.org/10.1007/S11665-015-1633-8

    Article  CAS  Google Scholar 

  37. S. Nosewicz, B. Romelczyk-Baishya, D. Lumelskyj, M. Chmielewski, P. Bazarnik, D. Jarząbek, K. Pietrzak, K. Kaszyca, Z. Pakieła, Experimental and numerical studies of micro- and macromechanical properties of modified copper–silicon carbide composites. Int. J. Solids. Struct. 160, 187–200 (2019). https://doi.org/10.1016/j.ijsolstr.2018.10.025

    Article  CAS  Google Scholar 

  38. M. Chmielewski, K. Pietrzak, M. Teodorczyk, S. Nosewicz, D. Jarząbek, R. Zybała, P. Bazarnik, M. Lewandowska, A. Strojny-Nędza, Effect of metallic coating on the properties of copper-silicon carbide composites. Appl. Surf. Sci. 421, 159–169 (2017). https://doi.org/10.1016/j.apsusc.2016.12.130

    Article  ADS  CAS  Google Scholar 

  39. W. Węglewski, P. Pitchai, M. Chmielewski, P.J. Guruprasad, M. Basista, Thermal conductivity of Cu-matrix composites reinforced with coated SiC particles: numerical modeling and experimental verification. Int. J. Heat Mass Transf. 188, 122633 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122633

    Article  Google Scholar 

  40. S.D. Oguntuyi, K. Nyembwe, M.B. Shongwe, O.T. Johnson, J.R. Adewumi, N. Malatji, P.A. Olubambi, Improvement on the fabrication of SiC materials: Processing, reinforcing phase, fabricating route—a review. Int. J. Lightweight Mater. Manuf. 6, 225–237 (2023). https://doi.org/10.1016/j.ijlmm.2022.10.005

    Article  CAS  Google Scholar 

  41. A. Sivkov, I. Rakhmatullin, I. Shanenkov, Y. Shanenkova, Boron carbide B4C ceramics with enhanced physico-mechanical properties sintered from multimodal powder of plasma dynamic synthesis. Int. J. Refract. Metals Hard Mater. 78, 85–91 (2019). https://doi.org/10.1016/j.ijrmhm.2018.09.003

    Article  Google Scholar 

  42. I. Shanenkov, D. Nikitin, A. Ivashutenko, Y. Shanenkova, Y. Vympina, D. Butenko, W. Han, A. Sivkov, Studies on the thermal stability of nanosized powder of WC1-x-based product prepared by plasma dynamic method, compaction feasibility of the powder and preparation of composite with aluminium. Ceram Int. 47, 6884–6895 (2021). https://doi.org/10.1016/j.ceramint.2020.11.035

    Article  CAS  Google Scholar 

  43. I.P. Dojčinović, M.M. Kuraica, B.M. Obradovć, N. Cvetanović, J. Purić, Optimization of plasma flow parameters of the magnetoplasma compressor. Plasma Sour. Sci Technol. 16, 72–79 (2006). https://doi.org/10.1088/0963-0252/16/1/010

    Article  ADS  CAS  Google Scholar 

  44. A.A. Drozdov, V.E. Kuznetsov, B.V. Ljublin, I.B. Ovchinnikov, V.A. Titov, Simulation of the iter plasma disruption with the plasma accelerator “vika.” Plasma Dev. Oper. 5, 77–98 (1997). https://doi.org/10.1080/10519999708228022

    Article  ADS  CAS  Google Scholar 

  45. I. Shanenkov, D. Nikitin, A. Ivashutenko, I. Rahmatullin, Y. Shanenkova, A. Nassyrbayev, W. Han, A. Sivkov, Hardening the surface of metals with WC1-x coatings deposited by high-speed plasma spraying. Surf. Coat. Tech. 389, 125639 (2020). https://doi.org/10.1016/j.surfcoat.2020.125639

    Article  CAS  Google Scholar 

  46. A. Sivkov, D. Nikitin, I. Shanenkov, A. Ivashutenko, I. Rahmatullin, A. Nassyrbayev, Optimization of plasma dynamic synthesis of ultradispersed silicon carbide and obtaining SPS ceramics on its basis, Int. J. Refract Metals Hard Mater. 79, 123–130 (2019). https://doi.org/10.1016/j.ijrmhm.2018.11.016.

  47. M. Chmielewski, K. Pietrzak, A. Strojny-Nędza, K. Kaszyca, R. Zybała, P. Bazarnik, M. Lewandowska, S. Nosewicz, Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique. Sci. Sinter. 49, 11–22 (2017). https://doi.org/10.2298/SOS1701011C

    Article  CAS  Google Scholar 

  48. D.-G. Dimitriu, M. Agop, Analysis of low-frequency instabilities in low-temperature magnetized plasma, in Fractional Dynamics, Anomalous Transport and Plasma Science, ed. by C.H. Skiadas (Springer, Cham, 2018). https://doi.org/10.1007/978-3-030-04483-1_5

    Article  Google Scholar 

  49. F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.U. Mao, A.F. Goncharov, The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996). https://doi.org/10.1016/0008-6223(96)00170-4

    Article  CAS  Google Scholar 

  50. J. Puric, I.P. Dojcinovic, V.M. Astashynski, M.M. Kuraica, B.M. Obradovic, Electric and thermodynamic properties of plasma flows created by a magnetoplasma compressor. Plasma Sour. Sci. Technol. 13, 74–84 (2003). https://doi.org/10.1088/0963-0252/13/1/010

    Article  ADS  CAS  Google Scholar 

  51. R.W. Olesinski, G.J. Abbaschian, The Cu−Si (Copper-Silicon) system. Bull. Alloy Phase Diagr. 7, 170–178 (1986). https://doi.org/10.1007/BF02881559

    Article  CAS  Google Scholar 

  52. H. Shi, W. Zhang, J. Wang, D. Wang, C. Wang, Z. Xiong, J. Wu, Z. Bai, X. Yan, Scalable synthesis of a porous structure silicon/carbon composite decorated with copper as an anode for lithium ion batteries. Appl Surf Sci. 620, 156843 (2023). https://doi.org/10.1016/j.apsusc.2023.156843

    Article  CAS  Google Scholar 

  53. B.D. Polat, O. Keles, Designing self-standing silicon-copper composite helices as anodes for lithium ion batteries. J. Alloys Compd. 677, 228–236 (2016). https://doi.org/10.1016/j.jallcom.2016.03.125

    Article  CAS  Google Scholar 

  54. Z. Zhou, Y. Zhang, Y. Hua, P. Dong, Y. Lin, M. Xu, D. Wang, X. Li, L. Han, J. Duan, Molten salt electrolytic synthesis of silicon-copper composite nanowires with enhanced performances as lithium ion battery anode. J Alloys Compd. 751, 307–315 (2018). https://doi.org/10.1016/j.jallcom.2018.04.128

    Article  CAS  Google Scholar 

  55. X. Yang, G. Xu, C. Jin, B. Liu, P. Ouyang, K. Kong, Y. Lan, Z. Yue, X. Li, F. Sun, L. Zhou, Si/Cu3Si/Cu composite material synthesized by low cost and high efficiency method as anode materials for lithium-ion batteries. Solid State Ion. 342, 115057 (2019). https://doi.org/10.1016/j.ssi.2019.115057

    Article  CAS  Google Scholar 

  56. G.L. Lu, F.H. Liu, X. Chen, J.F. Yang, Cu nanowire wrapped and Cu3Si anchored Si@Cu quasi core-shell composite microsized particles as anode materials for Li-ion batteries. J. Alloys Compd. 809, 151750 (2019). https://doi.org/10.1016/j.jallcom.2019.151750

    Article  CAS  Google Scholar 

  57. A. Sivkov, Y. Shanenkova, Y. Vympina, D. Nikitin, I. Shanenkov, Deposition of copper coatings on internal aluminum contact surfaces by high-energy plasma spraying. Surf. Coat. Tech. 440, 128484 (2022). https://doi.org/10.1016/j.surfcoat.2022.128484

    Article  CAS  Google Scholar 

  58. I. Shanenkov, A. Ivashutenko, Y. Shanenkova, D. Nikitin, Y. Zhu, J. Li, W. Han, A. Sivkov, Composite material WC1-x@C as a noble-metal-economic material for hydrogen evolution reaction. J. Alloys Compd. 834, 155116 (2020). https://doi.org/10.1016/J.JALLCOM.2020.155116

    Article  CAS  Google Scholar 

  59. O.L. Khasanov, E.S. Dvilis, A.O. Khasanov, Z.G. Bikbaeva, V.V. Polisadova, T.V. Milovanova, Influence of ultradispersed fraction of boron carbide powder on strength properties of the ceramics manufactured by SPS method. Adv. Mat. Res. 872, 45–51 (2013). https://doi.org/10.4028/www.scientific.net/AMR.872.45

    Article  CAS  Google Scholar 

  60. M.R. Akbarpour, Effects of mechanical milling time on densification, microstructural characteristics and hardness of Cu–SiC nanocomposites prepared by conventional sintering process. Mater. Chem. Phys. 261, 124205 (2021). https://doi.org/10.1016/j.matchemphys.2020.124205

    Article  CAS  Google Scholar 

  61. P. Bazarnik, S. Nosewicz, B. Romelczyk-Baishya, M. Chmielewski, A. Strojny Nędza, J. Maj, Y. Huang, M. Lewandowska, T.G. Langdon, Effect of spark plasma sintering and high-pressure torsion on the microstructural and mechanical properties of a Cu–SiC composite. Mater. Sci. Eng. A 766, 138350 (2019). https://doi.org/10.1016/j.msea.2019.138350

    Article  CAS  Google Scholar 

  62. M.R. Akbarpour, S. Alipour, Wear and friction properties of spark plasma sintered SiC/Cu nanocomposites. Ceram Int. 43, 13364–13370 (2017). https://doi.org/10.1016/j.ceramint.2017.07.037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation, grant number 21-73-10245, https://rscf.ru/project/21-73-10245/.

Funding

This work was supported by the Russian Science Foundation, Grant number 21–73-10245, https://rscf.ru/project/21-73-10245/.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All experiments were performed by AN and AT. Ponomarev, under the supervision of AS. YV was responsible for analyzing synthesized powder by means of SEM and TEM methods. XRD studies and their interpretation were performed by IS. DN was responsible for spark plasma sintering procedure. Material preparation, data collection and analysis were performed by IS and DN. The original draft was written by IS and DN and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ivan Shanenkov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanenkov, I., Nikitin, D., Nassyrbayev, A. et al. Plasma Dynamic Synthesis of Dispersed Cu/SiC Composites with a Controlled Phase Composition. Met. Mater. Int. 30, 814–831 (2024). https://doi.org/10.1007/s12540-023-01533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01533-4

Keywords

Navigation