Skip to main content
Log in

Atomic Scale Diffusion Study in Quaternary and Quinary Alloys of Co–Cr–Fe–Mn–Ni System

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A chemically homogeneous structure models were established for the multi-principal alloy CoCrFeMnNi and the quaternary CrFeMnNi, CoFeMnNi, CoCrMnNi, CoCrFeNi, and CoCrFeMn alloys, and calculations were performed based on vacancy diffusion mechanism using lattice dynamics and molecular dynamics methods for the self-diffusion of each component atom. By calculating four thermodynamic parameters, namely, vacancy formation energy, atomic migration energy, formation entropy, and effective frequency at the transition state, the self-diffusion properties of each component atom were obtained. The formation energy, migration energy, and formation entropy of each component in different alloys were relatively close. The Arrhenius form of diffusion for each component in the quinary alloy showed that the results modified by experimental values using molecular dynamics were close to the measured values within a given temperature range. Directly substituting the thermodynamic parameters yielded results with some deviation from the measured values, with Mn and Cr exhibiting greater deviations. By substituting experimental values for formation energies, the result for Mn was close to the measured value, while the deviation of Cr data was still relatively large. This might be due to the error in the potential describing the formation energy and effective frequency. Calculating the thermodynamic parameters for quaternary alloys allowed the diffusion Arrhenius form to be obtained. The diffusion coefficient of Mn was much higher than that of other elements, while that of Cr was at a lower level, and the diffusion coefficients of Fe, Co, and Ni were close. In multi-principal alloy systems, there are interactions between the components that affect diffusion behavior, and the degree of influence varies depending on the component type. It seems that Co, Cr, and Mn tend to promote self-diffusion, while Fe and Ni tend to hinder diffusion in these alloys.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. B. Cantor, I.T.H. Chang, P. Knight et al., Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 375, 213–218 (2004)

    Article  Google Scholar 

  2. Z. Zeng, M. Xiang, D. Zhang et al., Mechanical properties of Cantor alloys driven by additional elements: a review. J. Mater. Res. Technol. 15, 1920–1934 (2021)

    Article  CAS  Google Scholar 

  3. Y. Zhang, X. Yang, P.K. Liaw, Alloy design and properties optimization of high-entropy alloys. JOM 64(7), 830–838 (2012)

    Article  CAS  Google Scholar 

  4. G. Qin, S. Wang, R. Chen et al., Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys. J. Mater. Sci. Technol. 34(2), 365–369 (2018)

    Article  CAS  Google Scholar 

  5. M. Li, J. Gazquez, A. Borisevich et al., Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method. Intermetallics 95, 110–118 (2018)

    Article  CAS  Google Scholar 

  6. F.J. Wang, Y. Zhang, G.L. Chen, Atomic packing efficiency and phase transition in a high entropy alloy. J. Alloys Compd. 478(1), 321–324 (2009)

    Article  CAS  Google Scholar 

  7. J.W. Yeh, Recent progress in high-entropy alloys. Ann. Chim. Sci. Mater. 31(6), 633–648 (2006)

    Article  CAS  Google Scholar 

  8. M. Vaidya, K.G. Pradeep, B.S. Murty et al., Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Sci. Rep. 7, 12293 (2017)

    Article  CAS  Google Scholar 

  9. C. Zhang, F. Zhang, K. Jin et al., Understanding of the elemental diffusion behavior in concentrated solid solution alloys. J. Phase Equilib. Diffus. 38(4), 434–444 (2017)

    Article  Google Scholar 

  10. J. Dabrowa, M. Zajusz, W. Kucza et al., Demystifying the sluggish diffusion effect in high entropy alloys. J. Alloys Compd. 783, 193–207 (2019)

    Article  CAS  Google Scholar 

  11. D. Gaertner, J. Kottke, Y. Chumlyakov et al., Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high-entropy alloys: kinetic hints towards a low-temperature phase instability of the solid-solution? Scr. Mater. 187, 57–62 (2020)

    Article  CAS  Google Scholar 

  12. A. Mehta, Y. Sohn, Investigation of sluggish diffusion in FCC Al0.25CoCrFeNi high-entropy alloy. Mater. Res. Lett. 9(5), 239–246 (2021)

    Article  CAS  Google Scholar 

  13. K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61(13), 4887–4897 (2013)

    Article  CAS  Google Scholar 

  14. M. Vaidya, S. Trubel, B.S. Murty et al., Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloy. Compd. 688, 994–1001 (2016)

    Article  CAS  Google Scholar 

  15. M. Vaidya, K.G. Pradeep, B.S. Murty et al., Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211–224 (2018)

    Article  CAS  Google Scholar 

  16. T.R. Paul, I.V. Belova, G.E. Murch, Analysis of diffusion in high entropy alloys. Mater. Chem. Phys. 210, 301–308 (2018)

    Article  CAS  Google Scholar 

  17. M. Mizuno, K. Sugita, H. Araki, Defect energetics for diffusion in CrMnFeCoNi high-entropy alloy from first-principles calculations. Comput. Mater. Sci. 170, 109163 (2019)

    Article  CAS  Google Scholar 

  18. H. Guan, S. Huang, J. Ding et al., Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Mater. 187, 122–134 (2020)

    Article  CAS  Google Scholar 

  19. V.I. Razumovskiy, D. Scheiber, O. Peil et al., Thermodynamics of vacancy formation in the CoCrFeMnNi high entropy alloy from DFT calculations. Asp. Min. Miner. Sci. 8, 962 (2022)

    Google Scholar 

  20. P. Shewmon, Diffusion in Solids (Springer, Cham, 2016)

    Book  Google Scholar 

  21. M. Mantina, Y. Wang, R. Arroyave et al., First-principles calculation of self-diffusion coefficients. Phys. Rev. Lett. 100(21), 215901 (2008)

    Article  CAS  Google Scholar 

  22. W.M. Choi, Y.H. Jo, S.S. Sohn et al., Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. npj Comput. Mater. 4(1), 1 (2018)

    Article  CAS  Google Scholar 

  23. G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978–9985 (2000)

    Article  CAS  Google Scholar 

  24. G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)

    Article  CAS  Google Scholar 

  25. A.P. Thompson, H.M. Aktulga, R. Berger et al., LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022)

    Article  CAS  Google Scholar 

  26. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015)

    Article  CAS  Google Scholar 

  27. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)

    Article  Google Scholar 

  28. P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid et al., Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloy. Compd. 587, 544–552 (2014)

    Article  CAS  Google Scholar 

  29. Y.Z. Wang, Y.J. Wang, Disentangling diffusion heterogeneity in high-entropy alloys. Acta Mater. 224, 117527 (2022)

    Article  CAS  Google Scholar 

  30. S.S. Naghavi, V.I. Hegde, C. Wolverton, Diffusion coefficients of transition metals in fcc cobalt. Acta Mater. 132, 467–478 (2017)

    Article  CAS  Google Scholar 

  31. B. Widom, Some topics in the theory of fluids. J. Chem. Phys. 39(11), 2808–2812 (1963)

    Article  CAS  Google Scholar 

  32. K. Sugita, N. Matsuoka, M. Mizuno et al., Vacancy formation enthalpy in CoCrFeMnNi high-entropy alloy. Scr. Mater. 176, 32–35 (2020)

    Article  CAS  Google Scholar 

  33. M.I. Mendelev, B.S. Bokstein, Molecular dynamics study of self-diffusion in Zr. Philos. Mag. 90(5), 637–654 (2010)

    Article  CAS  Google Scholar 

  34. G. Bonny, N. Castin, D. Terentyev, Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 21(8), 085004 (2013)

    Article  CAS  Google Scholar 

  35. H. Guan, S. Huang, F. Tian et al., Universal enhancement of vacancy diffusion by Mn inducing anomalous Friedel oscillation in concentrated solid-solution alloys. https://doi.org/10.48550/arXiv.2303.15172 (2023).

Download references

Acknowledgements

This work was partially supported by Shenyang Ligong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Zhang, W. Atomic Scale Diffusion Study in Quaternary and Quinary Alloys of Co–Cr–Fe–Mn–Ni System. Met. Mater. Int. 30, 457–468 (2024). https://doi.org/10.1007/s12540-023-01522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01522-7

Keywords

Navigation