Skip to main content
Log in

Single Phase Medium Entropy U-Based Alloys: Thermodynamics, Synthesis, and Mechanical Behavior

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

High and medium entropy alloys (HEAs and MEAs) exhibit superior resistance to irradiation damage: there is thus great incentive to study uranium-based HEAs and MEAs. These materials could potentially be suitable candidates for use as nuclear fuels where severe irradiation regimes prevail. In the present study, the ability to predict single phase regions in the quaternary system, Mo–Nb–U–Zr, using thermodynamic calculations was demonstrated and proven experimentally. Similarly to other known bcc HEAs systems, the bcc phase in the present MEA system was shown to exhibit high yield strength but also brittleness. It was also shown that a single phase in the MEA system, Mo–Nb–U–Zr, could be obtained only for compositions containing no more than 10 at% of Mo.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Fang, Y. Zhang, J. Xue, S. Yan, Y. Wang, Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation. Sci. Rep. 6, 32146 (2016). https://doi.org/10.1038/srep32146

    Article  CAS  Google Scholar 

  2. S. Xia, M.C. Gao, T. Yang, P.K. Liaw, Y. Zhang, Phase stability and microstructures of high entropy alloys ion irradiated to high doses. J. Nucl. Mater. 480, 100–108 (2016). https://doi.org/10.1016/j.jnucmat.2016.08.017

    Article  CAS  Google Scholar 

  3. M. Aizenshtein, Z. Ungarish, K. Woller, S. Hayun, M.P. Short, Mechanical and microstructural response of the Al0.5CoCrFeNi high entropy alloy to Si and Ni ion irradiation. J. Nucl. Mater. Energ. 25, 100813 (2020). https://doi.org/10.1016/j.nme.2020.100813

    Article  Google Scholar 

  4. M. Aizenshtein, E. Brosh, Z. Ungarish, S. Levi, M. Tubul, D. Fadel, E. Greenberg, S. Hayun, High entropy uranium-based alloys: thermodynamics, characterization and mechanical properties. J. Nucl. Mater. 558, 153378 (2022). https://doi.org/10.1016/j.jnucmat.2021.153378

    Article  CAS  Google Scholar 

  5. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). https://doi.org/10.1002/adem.200300567

  6. J.W. Yeh, Recent progress in high-entropy alloys. Eur. J. Control. 31, 633–648 (2006). https://doi.org/10.3166/acsm.31.633-648

    Article  CAS  Google Scholar 

  7. C. Zhang, M.C. Gao, CALPHAD modeling of high-entropy alloys, in High-Entropy Alloys: Fundamentals and Applications, ed. by M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang (Springer, Cham, 2016), pp. 399–444

    Chapter  Google Scholar 

  8. Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, B. Li, Design of non-equiatomic medium-entropy alloys. Sci. Rep. 8, 1236 (2018). https://doi.org/10.1038/s41598-018-19449-0

    Article  CAS  Google Scholar 

  9. Y. Lu, Q.Q. Tang, C.P. Wang, Z.S. Li, Y.H. Guo, X.J. Liu, The application of CALPHAD calculations to uranium -based metallic nuclear fuels. J. Phase Equilib. Diffus. 39, 714–723 (2018). https://doi.org/10.1007/s11669-018-0677-5

    Article  CAS  Google Scholar 

  10. H. Zhang, Y. Du, Z. Shen, P. Zhou, Y. Peng, S. Liu, Y. Kong, V.B. Rajkumar, Thermodynamic modeling and solidified microstructure in the Mo–Nb–Zr ternary system. Calphad 66, 101630 (2019). https://doi.org/10.1016/j.calphad.2019.101630

    Article  CAS  Google Scholar 

  11. P. Zhou, Y. Peng, Y. Du, L. Zhang, W. Mo, T. Fa, B. Bai, X. Wang, Thermodynamic modeling of the U–Nb–Zr ternary system. J. Nucl. Mater. 523, 157–171 (2019). https://doi.org/10.1016/j.jnucmat.2019.05.045

    Article  CAS  Google Scholar 

  12. Y. Lu, X.J. Chen, Q. He, Y.H. Guo, X.J. Liu, C.P. Wang, Thermodynamic assessments of the U–Nb–Mo and U–Nb–Cr ternary systems. Calphad 73, 102260 (2021). https://doi.org/10.1016/j.calphad.2021.102260

    Article  CAS  Google Scholar 

  13. J.-O. Andersson, T. Helander, L. Hoglund, P.F. Shi, B. Sundman, Thermo-Calc and DICTRA, computational tools for materials science. Calphad 26, 273–312 (2002). https://doi.org/10.1016/S0364-5916(02)00037-8

  14. X. Mao, J. Takahashi, Development of a further miniaturized specimen of 3 mm diameter for TEM disk small punch tests. J. Nucl. Mater. 150, 42–52 (1987). https://doi.org/10.1016/0022-3115(87)90092-4

    Article  CAS  Google Scholar 

  15. D.E. Burkes, R. Prabhakaran, J.F. Jue, F.J. Rice, Mechanical Properties of DU-xMo Alloys with x = 7 to 12 Weight Percent. Metall. Mater. Trans. A 40, 1069–1079 (2009). https://doi.org/10.1007/s11661-009-9805-5

    Article  CAS  Google Scholar 

  16. H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, Mechanical properties of refractory high-entropy alloys: experiments and modeling. J. Alloy. Compd. 696, 1139–1150 (2017). https://doi.org/10.1016/j.jallcom.2016.11.188

    Article  CAS  Google Scholar 

  17. G. Lin, R. Guo, X. Shi, L. Han, J. Qiao, Lightweight multiprincipal element alloys with excellent mechanical properties at room and cryogenic temperatures. Entropy 24, 1777 (2022). https://doi.org/10.3390/e24121777

    Article  CAS  Google Scholar 

  18. J.C. Slater, Atomic radii in crystals. J. Chem. Phys. 41, 3199–3204 (1964). https://doi.org/10.1063/1.1725697

    Article  CAS  Google Scholar 

  19. S. Zalkind, O. Sabag, I. Makover, S. Haroush, Influence of carbon on the tensile properties of U-0.1w%Cr. J. Mater. Sci. Lett. 21, 551–553 (2002). https://doi.org/10.1023/A:1015461022009

    Article  CAS  Google Scholar 

  20. H. Yang, J. Shen, Y. Matsukawa, Y. Satoh, S. Kano, Z. Zhao, Y. Li, F. Li, H. Abe, Effects of alloying elements (Sn, Nb, Cr, and Mo) on the microstructure and mechanical properties of zirconium alloys. J. Nucl. Sci. Technol. 52, 1162–1173 (2015). https://doi.org/10.1080/00223131.2014.996622

    Article  CAS  Google Scholar 

  21. P.E. Armstrong, D.T. Eash, J.E. Hockett, Elastic moduli of alpha, beta and gamma polycrystalline uranium. J. Nucl. Mater. 45, 211–216 (1972). https://doi.org/10.1016/0022-3115(72)90167-5

    Article  Google Scholar 

  22. H.E. Rosinger, D.O. Northwood, The elastic properties of zirconium fuel cladding and pressure tubing materials. J. Nucl. Mater. 79, 170–179 (1979). https://doi.org/10.1016/0022-3115(79)90444-6

    Article  CAS  Google Scholar 

  23. W. Zhang, Y. Li, P.K. Liaw, Y. Zhang, A strategic design route to find a depleted uranium high-entropy alloy with great strength. Metals 12, 699 (2022). https://doi.org/10.3390/met12040699

    Article  CAS  Google Scholar 

  24. S. Sheikh, S. Shafeie, Q. Hu, J. Ahlstrom, C. Persson, J. Vesely, J. Zyka, U. Klement, S. Guo, Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 120, 164902 (2016). https://doi.org/10.1063/1.4966659

    Article  CAS  Google Scholar 

  25. L. Qi, D.C. Chrzan, Tuning ideal tensile strengths and intrinsic ductility of BCC refractory alloys. Phys. Rev. Lett. 112, 115503 (2014). https://doi.org/10.1103/PhysRevLett.112.115503

    Article  CAS  Google Scholar 

  26. H.A. Jahn, E. Teller, Stability of polyatomic molecules in degenerate electronic states - I—Orbital degeneracy. Proc. R. Soc. Lond. 161, 220–235 (1937). https://doi.org/10.1098/rspa.1937.0142

    Article  CAS  Google Scholar 

  27. Q. Li, H. Zhang, D. Li, Z. Chen, Z. Qi, The effect of configurational entropy on mechanical properties of single BCC structural refractory high-entropy alloys systems. Int. J. Refract. Met. Hard Mater. 93, 105370 (2020). https://doi.org/10.1016/j.ijrmhm.2020.105370

    Article  CAS  Google Scholar 

  28. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011). https://doi.org/10.1016/j.intermet.2011.01.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Ofer Omasi and Mr. Shahar Ochaion of the Materials Department at NRCN for their valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Aizenshtein.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aizenshtein, M., Brosh, E., Silhov, S. et al. Single Phase Medium Entropy U-Based Alloys: Thermodynamics, Synthesis, and Mechanical Behavior. Met. Mater. Int. 29, 3655–3663 (2023). https://doi.org/10.1007/s12540-023-01469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01469-9

Keywords

Navigation