Skip to main content
Log in

Study on the Microstructure and Corresponding Stress Corrosion Cracking Behavior of Joints of Copper Tubes

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effects of joining methods on the microstructure and corresponding stress corrosion cracking (SCC) behavior of copper tubes used in heat exchangers are evaluated by microstructure characterization and the slow strain rate testing (SSRT). The results show that the brazed joint (BJ) had worse SCC behavior and poorer fracture toughness than the mechanical joint (MJ). The fracture surfaces of the BJ and MJ samples after SSRT demonstrated the different fracture behaviors of the samples, especially intergranular brittle fracture in the BJ. Copper oxide layer on BJ is found to be extremely detrimental to the SCC behavior. Furthermore, a numerical model is established to predict and analyze the onset of the SCC along the surface of BJ.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Copper Development Association, Copper Tube Handbook: Industry Standard Guide for the Design and Installation of Copper Piping Systems (2006)

  2. J.R. Davis (ed.), ASM Specialty Handbook: Copper and Copper Alloys (ASM International, Almere, 2001)

  3. K. Mori, N. Bay, L. Fratini, F. Micari, A.E. Tekkaya, CIRP Ann. Manuf. Technol. 62, 673 (2013)

    Article  Google Scholar 

  4. K. Mori, Y. Abe, Int. J. Lightweight Mater. Manuf. 1, 1 (2018)

    Google Scholar 

  5. H. Miyamoto, D. Saburi, H. Fujiwara, Eng. Fail. Anal. 26, 108 (2012)

    Article  CAS  Google Scholar 

  6. R.G. Metcalfe, N. Pearce-Boltec, Eng. Fail. Anal. 90, 197 (2018)

    Article  CAS  Google Scholar 

  7. J.L. McDougall, M.E. Stevenson, J. Fail. Anal. Prev. 5, 13 (2005)

    Article  Google Scholar 

  8. J. Zhou, L. Yan, J. Tang, Z. Sun, L. Ma, Eng. Fail. Anal. 83, 9 (2018)

    Article  CAS  Google Scholar 

  9. G. Mori, D. Scherer, S. Schwentenwein, P. Warbichler, Corros. Sci. 47, 2099 (2005)

    Article  CAS  Google Scholar 

  10. B. Kuźnicka, K. Junik, Corros. Sci. 49, 3905 (2007)

    Article  Google Scholar 

  11. D. Tromans, J. Nutting, Corrosion 21, 143 (1965)

    Article  CAS  Google Scholar 

  12. A. Turnbull, L.N. McCartney, S. Zhou, Corros. Sci. 48, 2084–2105 (2006). https://doi.org/10.1016/j.corsci.2005.08.010

    Article  CAS  Google Scholar 

  13. A. Khalifeh, IntechOpen. pp. 1–198 (2020). https://doi.org/10.5772/intechopen.90893

    Book  Google Scholar 

  14. L.Y. Xu, Y.F. Cheng, Corros. Sci. 73, 150 (2013)

    Article  CAS  Google Scholar 

  15. Y.X. Lu, H.Y. Jing, Y.D. Han, L.Y. Xu, Mater. Corros. 69, 227 (2018)

    Article  CAS  Google Scholar 

  16. I. Adlakha, B.G. Bazehhour, N.C. Muthegowda, K.N. Solanki, Corros. Sci. 133, 300 (2018)

    Article  CAS  Google Scholar 

  17. S.Y. Anaman, S. Zhang, J.-S. Lee, H.-H. Cho, S.-T. Hong, J. Mater. Res. Technol. 19, 3110 (2022)

    Article  CAS  Google Scholar 

  18. ASTM E3-11. Standard Guide for Preparation of Metallographic Specimens, Annual Book of ASTM Standards, ASTM International, West Conshohocken. 3, (2017). http://www.astm.org

  19. ASTM Standard G102-89. Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. Annual Book of ASTM Standards, ASTM International, West Conshohocken, 3(2), (2006). http://www.astm.org

  20. Y.F. Cheng, Stress Corrosion Cracking of Pipelines (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  21. Y. Wang, Z. Huang, W. Hu, Q. Yu, H. Wang, X. Li, D. Dastan, Y. Zhou, J. Mater. Res. Technol. 19, 289 (2022)

    Article  CAS  Google Scholar 

  22. H. Wang, Z. Huang, X. Li, Y. Zhou, Q. Yu, W. Hu, Y. Wang, W. Zhuang, D. Dastan, J. Alloys Compd. 920, 166011 (2022)

    Article  CAS  Google Scholar 

  23. K. Shan, Z.Z. Yi, X.T. Yin, D. Dastan, H. Garmestani, Dalton Trans. 49, 8549 (2020)

    Article  CAS  Google Scholar 

  24. K. Shan, Z.Z. Yi, X.T. Yin, D. Dastan, F. Altaf, H. Garmestani, F.M. Alamgir, Surf. Interfaces 21, 100762 (2020)

    Article  CAS  Google Scholar 

  25. K. Shan, Z.Z. Yi, X.T. Yin, D. Dastan, H. Garmestani, Dalton Trans. 49, 6682 (2020)

    Article  CAS  Google Scholar 

  26. D. Dastan, S.W. Gosavi, N.B. Chaure, Macromol. Symp. 347, 81 (2015)

  27. B. Liu, X.J. Liu, H. Zhang, J. Loss Prev. Process Ind. 22, 884 (2009)

    Article  Google Scholar 

  28. L. Liu, C. Yang, J. Zhou, H. Garmestani, D. Dastan, Prot. Met. Phys. Chem. Surfaces 57, 367 (2021)

    Article  CAS  Google Scholar 

  29. Y. Jiao, Z. Huang, W. Hu, X. Li, Q. Yu, Y. Wang, Y. Zhou, D. Dastan, Mater. Sci. Eng. A 820, 141524 (2021)

    Article  CAS  Google Scholar 

  30. E.M. Gutman, Mechanochemistry of Solid Surfaces (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  31. H. Fan, Q. Wang, J.A. El-Awady, D. Raabe, M. Zaiser, Nat. Commun. 12, 1845 (2021)

    Article  CAS  Google Scholar 

  32. A.M. Podurets, M.I. Tkachenko, O.N. Ignatova, A.I. Lebedev, V.V. Igonin, V.A. Raevskii, Phys. Met. Metallogr. 114, 440 (2013)

    Article  Google Scholar 

  33. W. Zhang, X. Zhu, L. Liang, P. Yin, P. Xie, D. Dastan, K. Sun, R. Fan, Z. Shi, J. Mater. Sci. 56, 4254 (2021)

    Article  CAS  Google Scholar 

  34. L. Liang, Z. Shi, X. Tan, S. Sun, M. Chen, D. Dastan, B. Dong, L. Cao, Adv. Mater. Interfaces 9, 2101646 (2022)

    Article  CAS  Google Scholar 

  35. X.S. Liu, L. Zhang, P. Wang, Y. Zhang, H.Y. Fang, Rev. Adv. Mater. Sci. 33, 180 (2013)

    CAS  Google Scholar 

  36. M.B. Karamiş, A. Taşdemirci, F. Nair, J. Mater. Process. Technol. 141, 302 (2003)

    Article  Google Scholar 

  37. S. Chen, J.Y. Liu, B.A. Chin, J. Nucl. Mater. 212–215, 1600 (1994)

    Article  Google Scholar 

  38. X.X. Xu, F.L. Nie, J.X. Zhang, W. Zheng, Y.F. Zheng, C. Hu, G. Yang, Mater. Lett. 64, 524 (2010)

    Article  CAS  Google Scholar 

  39. A. Nikfahm, I. Danaee, A. Ashrafi, M.R. Toroghinejad, Mater. Res. 16, 1379 (2013)

    Article  CAS  Google Scholar 

  40. T. Yamasaki, H. Miyamoto, T. Mimaki, A. Vinogradov, S. Hashimoto, Mater. Sci. Eng. A 318, 122 (2001)

    Article  Google Scholar 

  41. S.Y. Anaman, H.H. Cho, H. Das, J.S. Lee, S.T. Hong, Mater. Charact. 154, 67 (2019)

    Article  CAS  Google Scholar 

  42. L. Wu, A. Ma, L. Zhang, Y. Zheng, Corros. Sci. 201, 110304 (2022)

    Article  CAS  Google Scholar 

  43. S. Lynch, Corros. Rev. 30, 63 (2012)

    CAS  Google Scholar 

  44. H.H. Cho, Y.C.K. Chen-Wiegart, D.C. Dunand, Scripta Mater. 115, 96 (2016)

    Article  CAS  Google Scholar 

  45. H.H. Cho, M.P.B. Glazer, D.C. Dunand, ACS Appl. Mater. Inter. 9, 15433 (2017)

    CAS  Google Scholar 

  46. M. Bobby Kannan and P.K. Shukla, in Stress Corros. Crack. Theory Pract. 409–426 (2011)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (MSIT) (No. NRF-2018R1A5A1025224). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3A04037992). HNH was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. NRF-2021R1A2C3005096). SYA was also supported by the Lightweight Material National Strategy Project (10081334) funded by the Korea Evaluation Institute of Industrial Technology (KEIT). HHC is grateful to support by the Sabbatical Leave Research Program of Hanbat National University in 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon-Hwe Cho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anaman, S.Y., Sung, HM., Yu, H.G. et al. Study on the Microstructure and Corresponding Stress Corrosion Cracking Behavior of Joints of Copper Tubes. Met. Mater. Int. 29, 3532–3547 (2023). https://doi.org/10.1007/s12540-023-01457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01457-z

Keywords

Navigation