Skip to main content
Log in

Simple Data Analytics Approach Coupled with Larson–Miller Parameter Analysis for Improved Prediction of Creep Rupture Life

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Machine learning of the creep rupture life dataset, which consists of test temperatures, stresses and rupture lives, received less attention in the community due to numerous physics-based and empirical models already available for the prediction of the creep rupture life, and a limited number (typically about 10 to 40) of available creep rupture life data points considered to be too small to be trained for the reliable prediction. A simple data analytics approach was developed for the quick and reliable assessment of the creep rupture life. The proposed approach involves linear regression as a major algorithm and the four features [two generic features (temperature (T) and stress (σ)) and two physics-informed features (ln σ and −1/T)], and exhibited superior creep rupture life predictions (validated by the 41 creep datasets of ferritic Cr steels) without any violation of creep phenomenology and data overfitting. In particular, the proposed approach was extremely useful to assess the fidelity of the Laron–Miller relation for a given creep rupture life dataset and to find an optimum Larson–Miller constant that minimizes a deviation from the ideal Larson–Miller relation. An analytical model was also developed based on curve fitting of Larson–Miller parameters calibrated by the optimum Larson–Miller constant. The proposed analytical model gave additional improvement in creep rupture life prediction, particularly for creep datasets, of which creep rupture lives were slightly less predicted by the data analytics approach. The two proposed models provided a synergistic effect in creep rupture life prediction when interactively used.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F.C. Monkman, An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc. ASTM 56, 593–620 (1956)

    Google Scholar 

  2. B. Choudhary, E.I. Samuel, J. Nucl. Mater. 412, 82–89 (2011)

    Article  CAS  Google Scholar 

  3. E.I. Samuel, B. Choudhary, D.R. Palaparti, M. Mathew, Proc. Eng. 55, 64–69 (2013)

    Article  CAS  Google Scholar 

  4. F.R. Larson, J. Miller, Trans. Am. Soc. Mech. Eng. 74, 765–771 (1952)

    Google Scholar 

  5. F. Furillo, S. Purushothaman, J. Tien, Scr. Metall. 11, 493–496 (1977)

    Article  CAS  Google Scholar 

  6. K.-H. Grote, H. Hefazi (eds.), Springer Handbook of Mechanical Engineering, 2nd edn. (Springer Nature, Switzerland, 2021), p. 174

  7. S.S. Manson, A.M. Haferd, A Linear Time-Temperature Relation for Extrapolation of Creep and Stress-Rupture Data (NACA, Washinton, 1953)

  8. J. Zhao, D.-M. Li, Y.-Y. Fang, J. Pressure Vessel Technol. 132, 064502 (2010)

    Article  Google Scholar 

  9. R.L. Orr, O.D. Sherby, J.E. Dorn, Correlations of Rupture Data for Metals at Elevated Temperatures (Institue of Engineering Research University of California, Berkeley, 1953)

    Book  Google Scholar 

  10. K. Kimura, K. Sawada, H. Kushima, Creep deformation, rupture strength, and rupture ductility of grades T/P92 steels, in Proceedings of the ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. Seattle, 25-27 March 2014 (ASME, New York, 2014), pp. 193–201

  11. M.E. Kassner, M.-T. Pérez-Prado, Prog. Mater Sci. 45, 1–102 (2000)

  12. B. Wilshire, A. Battenbough, Mater. Sci. Eng. A 443, 156–166 (2007)

    Article  Google Scholar 

  13. M. Yang, Q. Wang, X.-L. Song, J. Jia, Z.-D. Xiang, Int. J. Mater. Res. 107, 133–138 (2016)

    Article  CAS  Google Scholar 

  14. Q. Wang, M. Yang, X. Song, J. Jia, Z. Xiang, Metall. Mater. Trans. A. 47, 3479–3487 (2016)

    Article  CAS  Google Scholar 

  15. S.C. Kim, J.-H. Shim, W.-S. Jung, Y.S. Choi, Met. Mater. Int. 25, 713–722 (2019)

    Article  CAS  Google Scholar 

  16. B. Wilshire, P. Scharning, Scripta Mater. 56, 701–704 (2007)

    Article  CAS  Google Scholar 

  17. P.F. Tortorelli, H. Wang, K.A. Unocic, M.L. Santella, J.P. Shingledecker, V. Cedro III, Long-term creep-rupture behavior of Inconel® 740 and Haynes® 282, in Proceedings of the ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. Seattle, 25–27 (ASME, New York, 2014), pp. 29–36

  18. W. Harrison, M. Whittaker, S. Williams, Materials 6, 1118–1137 (2013)

    Article  CAS  Google Scholar 

  19. B. Wilshire, P. Scharning, R. Hurst, Mater. Sci. Eng. A 510, 3–6 (2009)

    Article  Google Scholar 

  20. M. Whittaker, W. Harrison, Mater. High Temp. 31, 233–238 (2014)

    Article  Google Scholar 

  21. S. Williams, M. Bache, B. Wilshire, Mater. Sci. Technol. 26, 1332–1337 (2010)

    Article  CAS  Google Scholar 

  22. Y. Yoo, C. Jo, C. Jones, Mater. Sci. Eng. A 336, 22–29 (2002)

    Article  Google Scholar 

  23. Y. Liu, J. Wu, Z. Wang, X.-G. Lu, M. Avdeev, S. Shi, C. Wang, T. Yu, Acta Mater. 195, 454–467 (2020)

    Article  CAS  Google Scholar 

  24. S. Xiang, X. Chen, Z. Fan, T. Chen, X. Lian, J. Market. Res. 18, 268–281 (2022)

    CAS  Google Scholar 

  25. Y. Tan, X. Wang, Z. Kang, F. Ye, Y. Chen, D. Zhou, X. Zhang, J. Gong, J. Market. Res. 21, 4745–4760 (2022)

    CAS  Google Scholar 

  26. B.O. Kong, M.S. Kim, B.H. Kim, J.H. Lee, Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-022-01312-7

  27. D. Shin, Y. Yamamoto, M.P. Brady, S. Lee, J.A. Haynes, Acta Mater. 168, 321–330 (2019)

    Article  CAS  Google Scholar 

  28. J. Wang, Y. Fa, Y. Tian, X. Yu, J. Market. Res. 13, 635–650 (2021)

    CAS  Google Scholar 

  29. X.-C. Zhang, J.-G. Gong, F.-Z. Xuan, Int. J. Fatigue 148, 106236 (2021)

    Article  CAS  Google Scholar 

  30. H. Han, W. Li, S. Antonov, L. Li, Comput. Mater. Sci. 205, 111229 (2022)

    Article  CAS  Google Scholar 

  31. C. Wang, X. Wei, D. Ren, X. Wang, W. Xu, Mater. Des. 213, 110326 (2022)

    Article  CAS  Google Scholar 

  32. A.K. Verma, J.A. Hawk, L.S. Bruckman, R.H. French, V. Romanov, J.L. Carter, Metall. Mater. Trans. A 50, 3106–3120 (2019)

  33. https://www.phase-trans.msm.cam.ac.uk/map/map.html

  34. Y.S. Yoo, I.S. Kim, D.H. Kim, C.Y. Jo, H.M. Kim, C.N. Jones, The application of neural network to the development of single crystal superalloys, in Proceedings of the 10th International Symposium on Superalloys, ed. by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S, Walston. Superalloys 2004, Seven Springs, 19-23 September 2004 (TMS, Pittsburgh, 2004), pp. 942–950

  35. Z. Abdallah, V. Gray, M. Whittaker, K. Perkins, Materials 7, 3371–3398 (2014)

    Article  Google Scholar 

  36. X.W. Zhu, H.H. Cheng, M.H. Shen, J.P. Pan, Adv. Mater. Res. 791–793, 374–377 (2013)

  37. Z. Guo, Z. Song, D. Huang, X. Yan, Met. Mater. Int. 28, 2972–2986 (2022)

    Article  CAS  Google Scholar 

  38. P. Wan, H. Yu, F. Li, P. Gao, L. Zhang, Z. Zhao, Met. Mater. Int. 28, 2498–2512 (2022)

  39. Y. Zeng, Y. Pan, N. Wang, J. Chen, X. Cai, Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-022-01313-6

  40. J. Yu, I.Y. Moon, H.W. Jeong, H.W. Lee, J.H. Kim, S.-H. Kang, Met. Mater. Int. 28, 3016–3032 (2022)

  41. S. Dutta, P.S. Robi, Met. Mater. Int. 28, 2884–2897 (2022)

Download references

Acknowledgements

This research was supported by the Nano and Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (2021M3A7C2089771 and 2021M3H4A1A04091999).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Suk Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Lee, T. & Choi, Y.S. Simple Data Analytics Approach Coupled with Larson–Miller Parameter Analysis for Improved Prediction of Creep Rupture Life. Met. Mater. Int. 29, 3149–3160 (2023). https://doi.org/10.1007/s12540-023-01445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01445-3

Keywords

Navigation