Skip to main content
Log in

On the Role of Semi-Die Angle in Multi-Pass Cyclic Expansion Extrusion: Effects on Microstructure and Mechanical Properties of AA 6063

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The influence of the semi-die angle (α = 45°, 30° and 22.5°employed in the present experiments) of the cyclic expansion extrusion (CEE) process on grain refinement in Al-alloy AA 6063 processed at 100°C at a pressing velocity of 0.5 mm.s− 1 and subjected to different number of passes is examined. The strain imparted on the specimen strongly depends on the die geometry. Grain refinement as well as increase in the ultimate tensile strength and micro-hardness after 10 CEE passes is the highest when the semi-die angle (α) is 22.5°. TEM images reveal the formation of fine grains after 10 CEE passes. Dislocation generation and cell formation directly depend on the strain imparted and the interactions between the dislocations and the Mg2Si precipitates. The tensile strength and hardness of the CEE processed specimens were compared as a function of the semi-die angle (α) and the results were compared with those of the unprocessed alloy also.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 4

Similar content being viewed by others

Data Availability

The authors conform that the data supporting the findings of this study are within this article.

References

  1. I.V. Alexandrov, K. Zhang, A.R. Kilmametov, K. Lu, R.Z. Valiev, Mater. Sci. Eng. A 234, 331–334 (1997)

    Article  Google Scholar 

  2. J.C. Kim, Y. Nishida, H. Arima, T. Ando, Mater. Lett. 57, 1689–1695 (2003)

    Article  CAS  Google Scholar 

  3. Y.S. Park, K.H. Chung, N.J. Kim, E.J. Lavernia, Mater. Sci. Eng. A 374, 211–216 (2004)

    Article  Google Scholar 

  4. C. Xu, Z. Horita, T.G. Langdon, Acta Mater. 56, 5168–5176 (2008)

    Article  CAS  Google Scholar 

  5. M. Richert, Q. Liu, N. Hansen, Mater. Sci. Eng. A 260, 275–283 (1999)

    Article  Google Scholar 

  6. Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov. Mater. Sci. Eng. A 503, 14–17 (2009)

    Article  Google Scholar 

  7. N. Pardis, R. Ebrahimi, Mater. Sci. Eng. A 527, 355–360 (2009)

    Article  Google Scholar 

  8. Y. Xu, L.H. JianboJia, Bo Xu,Mater. Charact. 118, 309–323 (2016)

    Article  CAS  Google Scholar 

  9. N. Pardis. B. Talebanpour, R. Ebrahimi, S. Zomorodian,Mater. Sci. Eng. A 528, 7537–7540 (2011)

    Article  CAS  Google Scholar 

  10. V. Babu, B.P. Shanmugavel, K.A. Padmanabhan, Archiv. Civ. Mech. Eng. 21, 38 (2021)

    Article  Google Scholar 

  11. M. Cai, D.P. Field, G.W. Lorimer, Mater. Sci. Eng. A 373, 65–71 (2004)

    Article  Google Scholar 

  12. W.S. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng. A 280, 37–49 (2000)

    Article  Google Scholar 

  13. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W. S. Miller. Mater. Sci. Eng. A 280, 102–107 (2000)

    Article  Google Scholar 

  14. H.J. Roven, M. Liu, J.C. Werenskiold, Mater. Sci. Eng. A 483, 54–58 (2008)

    Article  Google Scholar 

  15. B. Adamczyk-Cieślak, J. Mizera, K.J. Kurzydłowski, Mater. Charact. 62, 327–332 (2011)

    Article  Google Scholar 

  16. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Scripta Mater. 35, 143–146 (1996)

    Article  CAS  Google Scholar 

  17. S. Suwas, G. Gottstein, R. Kumar, Mater. Sci. Eng. A 471, 1–14 (2007)

    Article  Google Scholar 

  18. M. Furukawa, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 332, 97–109 (2002)

    Article  Google Scholar 

  19. R.B. Figueiredo, I.J. Beyerlein, A.P. Zhilyaev, T.G. Langdon, Mater. Sci. Eng. A 527, 1709–1718 (2010)

    Article  Google Scholar 

  20. Z.-S. Wang, Y.-J. Guan, G.-C. Wang, C.-K. Zhong, J. Mater. Process. Technol. 215, 205–218 (2015)

    Article  CAS  Google Scholar 

  21. N. Thangapandian, S. Balasivanandha Prabu, K.A. Padmanabhan, Mater. Sci. Eng. A 649, 229–238 (2016)

    Article  CAS  Google Scholar 

  22. V. Babu, S. Balasivanandha Prabu, K.A. Padmanabhan, Defect Diffus. Forum 385, 223–227 (2018)

    Article  Google Scholar 

  23. V. Babu, B.P. Shanmugavel, K.A. Padmanabhan, Met. Mater. Int. 27, 2919–2932 (2021)

    Article  CAS  Google Scholar 

  24. V. Babu, B.P. Shanmugavel, K.A. Padmanabhan, J. Mater. Eng. Perform. 29, 6870–6880 (2020)

    Article  CAS  Google Scholar 

  25. B. Avitzur, ASME J. Eng. Ind. 85, 89–95 (1963)

  26. B. Avitzur, ASME J. Eng. Ind. 86, 305–314 (1964)

  27. H.R. Torabi, M.M. Samandari, G. Faraji, A. Masoumi, J. Adv. Mater. Process. 3, 35–48 (2015)

    Google Scholar 

  28. M. Cabibbo, E. Evangelista, M. Vedani, Metall. Mater. Trans. A 36, 1353–1364 (2005)

    Article  Google Scholar 

  29. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta Mater. 52, 4589–4599 (2004)

    Article  CAS  Google Scholar 

  30. M. Das, G. Das, M. Ghosh, M. Wegner, V. Rajnikant, S. GhoshChowdhury, T.K. Pal, Mater. Sci. Eng. A 558, 525–532 (2012)

    Article  CAS  Google Scholar 

  31. R.A. Siddiqui, H.A. Abdullah, K.R. Al-Belushi, J. Mater. Process. Technol. 102, 234–240 (2000)

    Article  Google Scholar 

  32. S.K. Panigrahi, R. Jayaganthan, Mater. Sci. Eng. A 492, 300–305 (2008)

    Article  Google Scholar 

  33. G. Das, M. Das, S. Ghosh, P. Dubey, A.K. Ray, Mater. Sci. Eng. A 527, 1590–1594 (2010)

    Article  Google Scholar 

  34. J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 460, 77–85 (2007)

    Article  Google Scholar 

  35. A. Kelly 1966 Strong Solids, 84. Oxford, UK: Clarendon Press

  36. A. Chidambaram, S. Balasivanandha Prabu, K.A. Padmanabhan, Mater. Sci. Eng. A 759, 762–769 (2019)

    Article  CAS  Google Scholar 

  37. V. Babu, B.P. Shanmugavel, K.A. Padmanabhan, J. Mater. Eng. Perform. 29, 8049–8059 (2020)

    Article  Google Scholar 

  38. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Acta Mater. 44, 4619–4629 (1996)

    Article  CAS  Google Scholar 

  39. J.B. Lin, Q.D. Wang, M.P. Liu, Y.J. Chen, H.J. Roven, Trans. Nonferrous Met. Soc. China 22, 1902–1906 (2012)

    Article  CAS  Google Scholar 

  40. Y. Estrin, A. Vinogradov, Acta Mater. 61, 782–817 (2013)

    Article  CAS  Google Scholar 

  41. M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, S. H. Seyyedein, Prog. Nat. Sci. 26, 182–191 (2016)

    Article  CAS  Google Scholar 

  42. B. Chen, D.L. Lin, L. Jin, X.Q. Zeng, C. Lu, Mater. Sci. Eng. A 483, 113–116 (2008)

    Article  Google Scholar 

  43. R. Kapoor, A. Sarkar, R. Yogi, S.K. Shekhawat, I. Samajdar, J.K. Chakravartty, Mater. Sci. Eng. A 560, 404–412 (2013)

    Article  CAS  Google Scholar 

  44. O. Sitdikov, T. Sakai, A. Goloborodko, H. Miura, R. Kaibyshev, Mater. Trans. 45, 2232–2238 (2004)

    Article  CAS  Google Scholar 

  45. J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 387, 55–59 (2004)

    Article  Google Scholar 

  46. M. Kazeminezhad, E. Hosseini, Mater. Design 31, 94–103 (2010)

    Article  CAS  Google Scholar 

  47. M. Ensafi, G. Faraji, H. Abdolvand, Mater. Lett. 197, 12–16 (2017)

    Article  CAS  Google Scholar 

  48. I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Mater. Sci. Eng. A 483, 662–671 (2008)

    Article  Google Scholar 

  49. G. Faraji, M.M. Mashhadi, H.S. Kim, Mater. Sci. Eng. A 528, 4312–4317 (2011)

    Article  Google Scholar 

  50. F. Liu, H. Yuan, J. Yin, J.T. Wang, Mater. Sci. Eng. A 662, 578–587 (2016)

    Article  CAS  Google Scholar 

  51. A. Goloborodko, O. Sitdikov, R. Kaibyshev, H. Miura, T. Sakai, Mater. Sci. Eng. A 381, 121–128 (2004)

    Article  Google Scholar 

  52. M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, J.K. Park, Mater. Design 57, 250–257 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Indradev Samajdar, IIT Bombay, for permitting the use of the EBSD facility. The authors also are grateful to PSG College of Technology, Coimbatore, India for making available their TEM facility for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Babu.

Ethics declarations

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, V., Shanmugavel, B.P. & Padmanabhan, K.A. On the Role of Semi-Die Angle in Multi-Pass Cyclic Expansion Extrusion: Effects on Microstructure and Mechanical Properties of AA 6063. Met. Mater. Int. 29, 3066–3077 (2023). https://doi.org/10.1007/s12540-023-01423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01423-9

Keywords

Navigation