Skip to main content
Log in

Performance Analysis of Wide Magnesium Alloy Foil Rolled by Multi-Pass Electric Plastic Rolling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Wide magnesium alloy foil is usually difficult to roll due to severe anisotropy or texture. It has become the biggest obstacle to the traditional rolling process, although it can be realized through some special methods. Low efficiency and high cost limit its application. Aimed at this problem, a multi-pass electric plastic rolling process was designed to successfully roll the magnesium alloy foil from 1.0 to 0.13 mm. According to actual test results, the anisotropy and properties of magnesium alloy foil were analyzed when the pulse current densities were adjusted. Under the same temperature as the isothermal rolling process, the pure electric effect could contribute to remarkably improving the plasticity and rollability of magnesium alloy foil. Thus, it could minimize the action of Joule heat as much as possible to avoid surface oxidation and grain growth. In addition, the size effect of magnesium alloy foil should be considered for the electric plastic rolling. Practical measured data verified that varied pulse current densities played important roles in the performances of wide magnesium alloy foil when the grain size and anisotropy were online adjusted by the synergy of electric plastic effect and reduction rate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L.P. Yang, H.L. Zhang, Y.S. Zhang, Acta Metall. Sin. 57, 295–308 (2021). https://doi.org/10.11900/0412.1961.2020.00268

    Article  CAS  Google Scholar 

  2. J.H. Cho, S.S. Jeong, H.W. Kim, S.B. Kang, Mater. Sci. Eng. A 566, 40–46 (2013). https://doi.org/10.1016/j.msea.2012.12.066

    Article  CAS  Google Scholar 

  3. H. Watanabe, T. Mukai, K. Ishikawa, J. Mater. Process. Technol. 182, 644–647 (2007). https://doi.org/10.1016/j.jmatprotec.2006.08.010

    Article  CAS  Google Scholar 

  4. R. Cheng, M. Li, S. Du, H. Pan, Y. Liu, M. Gao, G. Qin, Mater. Sci. Eng. A 786, 139332 (2020). https://doi.org/10.1016/j.msea.2020.139332

    Article  CAS  Google Scholar 

  5. Z.Y. Zhao, R.G. Guan, Y.F. Shen, P.K. Bai, J. Mater. Sci. Technol. 91, 251–261 (2021). https://doi.org/10.1016/j.jmst.2021.02.052

    Article  CAS  Google Scholar 

  6. S. Yu, C. Liu, Y. Gao, S. Jiang, Z. Bao, Mater. Charact. 131, 135–139 (2017). https://doi.org/10.1016/j.matchar.2017.07.015

    Article  CAS  Google Scholar 

  7. M. Mohseni, A.R. Eivani, H. Vafaeenezhad, H.R. Jafarian, M.T. Salehi, J. Zhou, J. Market. Res. 15, 3585–3597 (2021). https://doi.org/10.1016/j.jmrt.2021.09.049

    Article  CAS  Google Scholar 

  8. A. Javaid, F. Czerwinski, J. Magnes. Alloy. 7, 27–37 (2019). https://doi.org/10.1016/j.jma.2019.02.001

    Article  CAS  Google Scholar 

  9. M.E. Mehtedi, A. D’Orazio, A. Forcellese, M. Pieralisi, M. Simoncini, Procedia CIRP 67, 493–497 (2018). https://doi.org/10.1016/j.procir.2017.12.250

    Article  Google Scholar 

  10. E. Tolouie, R. Jamaati, Mater. Sci. Eng. A 738, 81–89 (2018). https://doi.org/10.1016/j.msea.2018.09.086

    Article  CAS  Google Scholar 

  11. Z.Z. Jin, X.M. Cheng, M. Zha, J. Rong, H. Zhang, J.G. Wang, H.Y. Wang, J. Mater. Sci. Technol. 35, 2017–2026 (2019). https://doi.org/10.1016/j.jmst.2019.05.017

    Article  CAS  Google Scholar 

  12. K.K. Verma, S. Kumar, S. Suwas, Mater. Sci. Eng. A 821, 141480 (2021). https://doi.org/10.1016/j.msea.2021.141480

    Article  CAS  Google Scholar 

  13. S.H. Wang, J.F. Ma, J.L. Yang, W.C. Zhang, Y.P. Sun, J.Q. Pan, W.Z. Chen, J. Market. Res. 14, 2124–2130 (2021). https://doi.org/10.1016/j.jmrt.2021.07.124

    Article  CAS  Google Scholar 

  14. H.F. Sun, S.J. Liang, E.D. Wang, Trans. Nonferr. Met. Soc. China 19, 349–354 (2009). https://doi.org/10.1016/S1003-6326(10)60067-2

    Article  Google Scholar 

  15. F. Guo, D.F. Zhang, X.S. Yang, L.Y. Jiang, F.S. Pan, Trans. Nonferr. Met. Soc. China 25, 14–21 (2015). https://doi.org/10.1016/S1003-6326(15)63573-7

    Article  CAS  Google Scholar 

  16. H.L. Ding, K. Hirai, S. Kamado, Mater. Sci. Eng. A 527, 3379–3385 (2010). https://doi.org/10.1016/j.msea.2010.02.068

    Article  CAS  Google Scholar 

  17. S.H. Wang, W.C. Zhang, H.X. Wang, J.L. Yang, W.Z. Chen, G.R. Cui, G.F. Wang, Mater. Sci. Eng. A 803, 140488 (2021). https://doi.org/10.1016/j.msea.2020.140488

    Article  CAS  Google Scholar 

  18. Z.X. Su, C.Y. Sun, M.J. Wang, L.Y. Qian, X.T. Li, J. Magnes. Alloy. 10, 281–294 (2022). https://doi.org/10.1016/j.jma.2021.07.022

    Article  CAS  Google Scholar 

  19. Z.G. Xu, H.L. Zhang, P. Krishnan, C. Hale, L.J. Kecskes, S. Yarmolenko, J. Sankar, Mech. Mater. 164, 104111 (2022). https://doi.org/10.1016/j.mechmat.2021.104111

    Article  Google Scholar 

  20. X.Q. Li, L. Ren, Q.C. Le, L. Bao, P.P. Jin, P. Wang, C.L. Cheng, X. Zhou, C.L. Hu, J. Magnes. Alloy. 9, 937–949 (2021). https://doi.org/10.1016/j.jma.2020.06.015

    Article  CAS  Google Scholar 

  21. C.Y. Ma, N. Xia, W.G. Cheng, M.X. Li, Z.M. Hua, M.W. Ren, H.Y. Wang, J. Alloy. Compd. 869, 159308 (2021). https://doi.org/10.1016/j.jallcom.2021.159308

    Article  CAS  Google Scholar 

  22. Y.C. Xin, H. Zhou, G.L. Wu, H.H. Yu, A. Chapuis, Q. Liu, Mater. Sci. Eng. A 639, 534–539 (2015). https://doi.org/10.1016/j.msea.2015.05.070

    Article  CAS  Google Scholar 

  23. J. Xu, B. Guan, Y.C. Xin, X.D. Wei, G.J. Huang, C.L. Liu, Q. Liu, J. Mater. Sci. Technol. 99, 251–259 (2022). https://doi.org/10.1016/j.jmst.2021.04.076

    Article  CAS  Google Scholar 

  24. X.S. Huang, K. Suzuki, Y. Chino, M. Mabuchi, J. Alloy. Compd. 632, 94–102 (2015). https://doi.org/10.1016/j.jallcom.2015.01.148

    Article  CAS  Google Scholar 

  25. S.M. Fatemi, A.K. Kazemi Asl, H. Paul, J. Alloy. Compd. 894, 162412 (2022). https://doi.org/10.1016/j.jallcom.2021.162412

    Article  CAS  Google Scholar 

  26. M. Thirumurugan, S. Kumaran, S. Suwas, T.S. Rao, Mater. Sci. Eng. A 528, 8460–8468 (2011). https://doi.org/10.1016/j.msea.2011.07.047

    Article  CAS  Google Scholar 

  27. Y.G. Ko, K. Hamad, J. Alloy. Compd. 744, 96–103 (2018). https://doi.org/10.1016/j.jallcom.2018.02.095

    Article  CAS  Google Scholar 

  28. W.P. Jia, X.D. Hu, H.Y. Zhao, D.Y. Ju, D.L. Chen, J. Alloy. Compd. 645, 70–77 (2015). https://doi.org/10.1016/j.jallcom.2015.04.121

    Article  CAS  Google Scholar 

  29. L. Mei, X.P. Chen, G.J. Huang, Q. Liu, J. Alloy. Compd. 777, 259–263 (2019). https://doi.org/10.1016/j.jallcom.2018.11.012

    Article  CAS  Google Scholar 

  30. U.M. Chaudry, T.H. Kim, Y.S. Kim, K. Hamad, Y.G. Ko, J.G. Kim, Mater. Sci. Eng. A 762, 138085 (2019). https://doi.org/10.1016/j.msea.2019.138085

    Article  CAS  Google Scholar 

  31. B.Q. Xiao, J.F. Song, A.T. Tang, B. Jiang, W.Y. Sun, Q. Liu, H. Zhao, F. Pan, J. Mater. Process. Tech. 280, 116611 (2020). https://doi.org/10.1016/j.jmatprotec.2020.116611

    Article  CAS  Google Scholar 

  32. F. Pan, B. Zeng, B. Jiang, M. Zhang, H. Dong, J. Alloy. Compd. 693, 414–420 (2017). https://doi.org/10.1016/j.jallcom.2016.09.220

    Article  CAS  Google Scholar 

  33. C.C. Zhi, L.F. Ma, Q.X. Huang, Z.Q. Huang, J.B. Lin, J. Mater. Process. Tech. 255, 333–339 (2018). https://doi.org/10.1016/j.jmatprotec.2017.12.022

    Article  CAS  Google Scholar 

  34. Y.C. Huang, B.Q. Xiao, J.F. Song, H. Zhao, Q. Liu, B. Jiang, F.S. Pan, J. Market. Res. 9, 1988–1997 (2020). https://doi.org/10.1016/j.jmrt.2019.12.031

    Article  CAS  Google Scholar 

  35. Y. Zhang, H.T. Jiang, Q. Kang, Y.J. Wang, Y.G. Yang, S.W. Tian, J. Magnes. Alloy. 8, 769–779 (2020). https://doi.org/10.1016/j.jma.2019.11.015

    Article  CAS  Google Scholar 

  36. S.W. Lee, G.K. Han, T.S. Jun, S.H. Park, J. Mater. Sci. Technol. 66, 139–149 (2021). https://doi.org/10.1016/j.jmst.2020.04.074

    Article  Google Scholar 

  37. W.Z. Chen, L.M. Ma, X.M. Chen, G.R. Cui, W.C. Zhang, E.D. Wang, Mater. Sci. Eng. A 733, 350–360 (2018). https://doi.org/10.1016/j.msea.2018.07.067

    Article  CAS  Google Scholar 

  38. S.M. Fatemi, S. Kheyrabadi, H. Paul, J. Magnes. Alloy. 10, 3470–3484 (2022). https://doi.org/10.1016/j.jma.2021.08.027

    Article  CAS  Google Scholar 

  39. S.J. Kim, C.D. Yim, Y.S. Lee, J.H. Yoon, J.H. Lee, Mater. Sci. Eng. A 596, 216–221 (2014). https://doi.org/10.1016/j.msea.2013.12.059

    Article  CAS  Google Scholar 

  40. W.K. Wang, W.Z. Chen, W.C. Zhang, G.R. Cui, E.D. Wang, Mater Sci Eng. A 712, 608–615 (2018). https://doi.org/10.1016/j.msea.2017.12.024

    Article  CAS  Google Scholar 

  41. A. Malik, Y.W. Wang, F. Nazeer, M.A. Khan, T. Ali, Q.T. Ain, J Mater Res Technol 9, 14478–14499 (2020). https://doi.org/10.1016/j.jmrt.2020.10.023

    Article  CAS  Google Scholar 

  42. K. Zhang, J.H. Zheng, Y. Huang, C. Pruncu, J. Jiang, Mater. Design 193, 108793 (2020). https://doi.org/10.1016/j.matdes.2020.108793

    Article  CAS  Google Scholar 

  43. R. Floriano, D.R. Leiva, G.C. Melo, T.T. Ishikawa, J. Huot, M. Kaufman, W.J. Botta, Int. J. Hydr. Energy 42, 29394–29405 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.035

    Article  CAS  Google Scholar 

  44. H. Asgari, J.A. Szpunar, A.G. Odeshi, L.J. Zeng, E. Olsson, Mater. Sci. Eng. A 633, 92–102 (2015). https://doi.org/10.1016/j.msea.2015.03.020

    Article  CAS  Google Scholar 

  45. R. Verma, S.K. Nath, R. Jayaganthan, Mater. Today: Proceed. 5, 17195–17202 (2018). https://doi.org/10.1016/j.matpr.2018.04.129

    Article  CAS  Google Scholar 

  46. Z.P. Yu, Y.H. Yan, J. Yao, C. Wang, M. Zha, X.Y. Xu, Q.C. Jiang, J. Alloy. Compd. 744, 211–219 (2018). https://doi.org/10.1016/j.jallcom.2018.01.344

    Article  CAS  Google Scholar 

  47. J. Tian, J.F. Deng, R. Ma, Y.Y. Chang, W. Liang, J.Y. Ma, Mater. Lett. 305, 130820 (2021). https://doi.org/10.1016/j.matlet.2021.130820

    Article  CAS  Google Scholar 

  48. Q.S. Yang, Q.W. Dai, C. Lou, J.H. Dai, J.Y. Zhang, B. Jiang, F.S. Pan, Progr. Natural Sci.: Mater. Int. 29, 231–236 (2019). https://doi.org/10.1016/j.pnsc.2019.03.008

    Article  CAS  Google Scholar 

  49. B. Song, Z.W. Du, Q.S. Yang, N. Guo, S.F. Guo, J.C. Yu, R.L. Xin, Trans. Nonferr. Met. Soc. China 31, 1322–1338 (2021). https://doi.org/10.1016/S1003-6326(21)65580-2

    Article  CAS  Google Scholar 

  50. J. Su, M. Sanjari, A.S.H. Kabir, I.H. Jung, J.J. Jonas, S. Yue, H. Utsunomiya, Mater. Sci. Eng. A 636, 582–592 (2015). https://doi.org/10.1016/j.msea.2015.03.083

    Article  CAS  Google Scholar 

  51. G.S. Duan, B.L. Wu, X.H. Du, G. Zhao, Y.D. Zhang, X. Zhao, C. Esling, Mater. Sci. Eng. A 620, 120–128 (2015). https://doi.org/10.1016/j.msea.2014.10.001

    Article  CAS  Google Scholar 

  52. A.R. Eivani, M. Mehdizade, S. Chabok, J. Zhou, J. Market. Res. 12, 1946–1957 (2021). https://doi.org/10.1016/j.jmrt.2021.03.021

    Article  CAS  Google Scholar 

  53. J. Su, M. Sanjari, A.S.H. Kabir, J.J. Jonas, S. Yue, Mater. Sci. Eng. A 662, 412–425 (2016). https://doi.org/10.1016/j.msea.2016.03.047

    Article  CAS  Google Scholar 

  54. Q. Xu, A.B. Ma, Y.H. Li, J.P. Sun, Y.C. Yuan, J.H. Jiang, C.Y. Ni, J. Magnes. Alloy. 8, 192–198 (2020). https://doi.org/10.1016/j.jma.2019.05.012

    Article  CAS  Google Scholar 

  55. J.A. Del Valle, O.A. Ruano, Mater. Lett. 63, 1551–1554 (2009). https://doi.org/10.1016/j.matlet.2009.04.014

    Article  CAS  Google Scholar 

  56. Y. Xu, X.X. Zhang, W. Li, P.H. Hu, J.B. Jia, J.T. Luo, Mater. Sci. Eng. A 781, 139221 (2020). https://doi.org/10.1016/j.msea.2020.139221

    Article  CAS  Google Scholar 

  57. Z.G. Li, H.F. Yang, J.G. Liu, F. Liu, J. Magnes. Alloy. 10, 569–584 (2022). https://doi.org/10.1016/j.jma.2021.05.005

    Article  CAS  Google Scholar 

  58. J. Wang, Y. Wang, Z.R. Li, Results Phys. 26, 104406 (2021). https://doi.org/10.1016/j.rinp.2021.104406

    Article  Google Scholar 

  59. M. Pekguleryuz, M. Celikin, M. Hoseini, A. Becerra, L. Mackenzie, J. Alloy. Compd. 510, 15–25 (2012). https://doi.org/10.1016/j.jallcom.2011.08.093

    Article  CAS  Google Scholar 

  60. J. Tian, H.H. Lu, W.G. Zhang, H.H. Nie, Q.X. Shi, J.F. Deng, L.F. Wang, J. Magnes. Alloy. 10, 2193–2207 (2022). https://doi.org/10.1016/j.jma.2021.01.007

    Article  CAS  Google Scholar 

  61. A. Jamali, A.X. Ma, J. Llorca, Scripta Materialia 207, 114304 (2022). https://doi.org/10.1016/j.scriptamat.2021.114304

    Article  CAS  Google Scholar 

  62. F.K. Ning, X. Zhou, Q.C. Le, X.Q. Li, Y. Li, Mater. Today Commun. 24, 101129 (2020). https://doi.org/10.1016/j.mtcomm.2020.101129

    Article  CAS  Google Scholar 

  63. Y. Nakai, S. Kikuchi, K. Asayama, H. Yoshida, Mater. Sci. Eng. A 826, 141941 (2021). https://doi.org/10.1016/j.msea.2021.141941

    Article  CAS  Google Scholar 

  64. H. Zhang, W.L. Cheng, J.F. Fan, B.S. Xu, H.B. Dong, Mater. Sci. Eng. A 637, 243–250 (2015). https://doi.org/10.1016/j.msea.2015.04.057

    Article  CAS  Google Scholar 

  65. R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng. A 556, 211–220 (2012). https://doi.org/10.1016/j.msea.2012.06.079

    Article  CAS  Google Scholar 

  66. X.W. Ren, Y.C. Huang, X.Y. Zhang, H. Li, Y.X. Zhao, Mater. Sci. Eng. A 800, 140306 (2021). https://doi.org/10.1016/j.msea.2020.140306

    Article  CAS  Google Scholar 

  67. A. Kula, C.J. Silva, M. Niewczas, J. Alloy. Compd. 727, 642–657 (2017). https://doi.org/10.1016/j.jallcom.2017.08.135

    Article  CAS  Google Scholar 

  68. J.H. Peng, Z.A. Zhang, P. Guo, W. Zhou, Y.C. Wu, J. Alloy. Compd. 817, 153302 (2020). https://doi.org/10.1016/j.jallcom.2019.153302

    Article  CAS  Google Scholar 

  69. G.M. Zhu, L.Y. Wang, Y.J. Sun, X.Q. Shang, J. Wang, H.M. Wang, X.Q. Zeng, Int. J. Plast. 143, 103018 (2021). https://doi.org/10.1016/j.ijplas.2021.103018

    Article  CAS  Google Scholar 

  70. D. Liu, Z.Y. Liu, E.D. Wang, Trans. Nonferr. Met. Soc. China 28, 244–325 (2018). https://doi.org/10.1016/S1003-6326(18)64657-6

    Article  CAS  Google Scholar 

  71. P.Y. Wang, J.G. Wang, H.L. Jia, C. Wang, J.S. Li, Z.T. Hu, H.Y. Wang, Mater. Sci. Eng. A 819, 141452 (2021). https://doi.org/10.1016/j.msea.2021.141452

    Article  CAS  Google Scholar 

  72. X.U. Chun, Y.N. Li, X.H. Rao, Trans. Nonferr. Met. Soc. China 24, 3777–3784 (2014). https://doi.org/10.1016/S1003-6326(14)63532-9

    Article  CAS  Google Scholar 

  73. H.J. Guo, X. Zeng, J.F. Fan, H. Zhang, Q. Zhang, W. Li, B. Xu, J. Mater. Sci. Technol. 35, 1113–1120 (2019). https://doi.org/10.1016/j.jmst.2018.11.008

    Article  CAS  Google Scholar 

  74. X.P. Li, X.H. Li, Y.D. Ye, R.K. Zhang, S.Z. Kure-Chu, G.Y. Tang, Mater. Sci. Eng. A 742, 722–733 (2019). https://doi.org/10.1016/j.msea.2018.09.041

    Article  CAS  Google Scholar 

  75. H. Xiao, Z. Lu, K.F. Zhang, S.S. Jiang, C.C. Shi, Mater. Design 186, 108279 (2020). https://doi.org/10.1016/j.matdes.2019.108279

    Article  CAS  Google Scholar 

  76. X.W. Xiao, S. Xu, D. Sui, H. Zhang, Mater. Lett. 288, 362–367 (2021). https://doi.org/10.1016/j.matlet.2021.129362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Returned Overseas Scholar Foundation of Hebei Province (Grant No. C20210321) and the Natural Science Foundation of Hebei Province (Grant No. E2021203106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lipo Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, H. & Liu, G. Performance Analysis of Wide Magnesium Alloy Foil Rolled by Multi-Pass Electric Plastic Rolling. Met. Mater. Int. 29, 2783–2794 (2023). https://doi.org/10.1007/s12540-023-01414-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01414-w

Keywords

Navigation