Skip to main content
Log in

Experimental Investigation and Modeling of Creep Curve of Zr–2.5Nb Alloy by Machine Learning Techniques

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the present work, creep tests on Zr–2.5Nb alloy at different stresses and temperatures in the two-phase region were carried out. The three creep regions were very distinct at low stresses and temperatures, whereas the secondary creep regions narrowed down considerably at higher temperatures and stresses. Data obtained from these creep tests were used to simulate the creep curves by multiple linear regression (MLR) and artificial neural network (ANN) modeling. The MLR model was able to predict the primary creep region accurately; however, it over-predicted the secondary creep region. ANN model could simulate all the three creep regions with very high accuracy, where 98% of the creep strain could be predicted within a deviation of ± 5%. Two different creep experiments were conducted to verify the predictability of the proposed models. The results indicate that the ANN technique can be used to predict the creep curves of two-phase alloys.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Wu, S. Williams, D. Gong, J. Mater. Eng. Perform. 21, 2255 (2012)

    Article  CAS  Google Scholar 

  2. M. Kumar, I.V. Singh, B.K. Mishra, S. Ahmad, A. Venugopal Rao, V. Kumar, J. Mater. Eng. Perform. 25, 3985 (2016)

    Article  CAS  Google Scholar 

  3. S. Bagui, B.P. Sahu, K. Laha, S. Tarafder, R. Mitra, Metall. Mater. Trans. A 52, 94 (2021)

  4. C.-L. Dong, H.-C. Yu, Z.-H. Jiao, Rare Metals 35, 106 (2016)

  5. T. Izaki, T. Kobayashi, J. Kusumoto, A. Kanaya, Int. J. Pres. Ves. Pip. 86, 637 (2009)

  6. M. Taheri, S.F. Kashani-Bozorg, Metallogr. Microstruct. Anal. 10, 199 (2021)

  7. K. Sawada, M. Tabuchi, K. Kimura, Mater. Sci. Eng. A 510–511, 190 (2009)

  8. S. Manson, A. Haferd, Technical Note 2890, National Advisory Committee for Aeronautics (National Advisory Committee for Aeronautics, Washington, 1953)

  9. O.D. Sherby, R.L. Orr, J.E. Dorn, Jom 6, 71 (1954)

  10. F.R. Larson, J. Miller, Trans. ASME 74, 765 (1952)

  11. A. Ghatak, P.S. Robi, Trans. Indian Inst. Met. 69, 579 (2016)

    Article  Google Scholar 

  12. F.C. Monkman, N.J. Grant, in Proceedings of ASTM (ASTM International, West Conshohocken, 1956), pp. 593–620

  13. F. Dobeš, K. Milička, Met. Sci. 10, 382 (1976)

    Article  Google Scholar 

  14. T.A. Hayes, M.E. Kassner, Metall. Mater. Trans. A 37, 2389 (2006)

  15. R.N. Singh, S. Mukherjee, R. Kishore, B.P. Kashyap, J. Nucl. Mater. 345, 146 (2005)

    Article  CAS  Google Scholar 

  16. R.N. Singh, R. Kishore, A.K. Singh, T.K. Sinha, B.P. Kashyap, Metall. Mater. Trans. A 32, 2827 (2001)

  17. S. Dutta, P.S. Robi, J. Mech. Sci. Technol. 35, 3369 (2021)

    Article  Google Scholar 

  18. G. Nandan, P. Majumdar, P.K. Sahoo, R. Kumar, B. Chatterjee, D. Mukhopadhyay, H.G. Lele, Nucl. Eng. Des. 243, 301 (2012)

    Article  CAS  Google Scholar 

  19. A. Sarkar, S.K. Sinha, J.K. Chakravartty, R.K. Sinha, Ann. Nucl. Energy 69, 246 (2014)

    Article  CAS  Google Scholar 

  20. R.S.W. Shewfelt, L.W. Lyall, J. Nucl. Mater. 132, 41 (1985)

    Article  CAS  Google Scholar 

  21. N. Christodoulou, P.A. Turner, C.N. Tomé, C.K. Chow, R.J. Klassen, Metall. Mater. Trans. A 33, 1103 (2002)

  22. Y.S. Kim, K.S. Im, Y.M. Cheong, S.B. Ahn, J. Nucl. Mater. 346, 120 (2005)

    Article  CAS  Google Scholar 

  23. R.A. Holt, J. Nucl. Mater. 372, 182 (2008)

    Article  CAS  Google Scholar 

  24. B.N. Rath, H.N. Singh, J.L. Singh, N. Kumawat, P.M. Ouseph, D.N. Sah, Trans. Indian Inst. Met. 63, 671 (2010)

  25. K. Guguloth, M. Ghosh, J. Swaminathan, R. Mitra, Mater. Sci. Eng. A 791, 139681 (2020)

    Article  CAS  Google Scholar 

  26. A.F. Schon, N.A. Castro, A. dos Santos Barros, J.E. Spinelli, A. Garcia, N. Cheung, B.L. Silva, Mater. Lett. 304 , 130587 (2021)

  27. M. Kusano, S. Miyazaki, M. Watanabe, S. Kishimoto, D.S. Bulgarevich, Y. Ono, A. Yumoto, Mater. Sci. Eng. A 787, 139549 (2020)

    Article  CAS  Google Scholar 

  28. D. Yang, Z. Liu, Int. J. Refract. Met. Hard Mater. 51, 192 (2015)

    Article  CAS  Google Scholar 

  29. S. Milhomme, J. Lartigau, C. Brugger, C. Froustey, Int. J. Adv. Manuf. Technol. 117, 607 (2021)

    Article  Google Scholar 

  30. Y. Lazo, L. Suárez, M. Fernández, L. Fernández, Superlattice. Microst. 45, 117 (2009)

  31. P.S. Robi, U.S. Dixit, J. Mater. Process. Tech. 142, 289 (2003)

  32. M. Kamrunnahar, M. Urquidi-Macdonald, Corros. Sci. 52, 669 (2010)

    Article  CAS  Google Scholar 

  33. A.F. Yetim, M.Y. Codur, M. Yazici, Mater. Lett. 158, 170 (2015)

    Article  CAS  Google Scholar 

  34. L. Ping, X. Kemin, L. Yan, T. Jianrong, J. Mater. Process. Tech. 148, 235 (2004)

  35. N.S. Reddy, Y.H. Lee, C.H. Park, C.S. Lee, Mater. Sci. Eng. A 492, 276 (2008)

    Article  Google Scholar 

  36. S. Banerjee, P.S. Robi, A. Srinivasan, Metall. Mater. Trans. A 43, 3834 (2012)

  37. A. Asgharzadeh, H. Asgharzadeh, A. Simchi, Met. Mater. Int. 27, 5212 (2021)

  38. R. Kapoor, D. Pal, J.K. Chakravartty, J. Mater. Process. Tech. 169, 199 (2005)

  39. H. R. Rezaei Ashtiani, A. A. Shayanpoor, Met. Mater. Int. 27, 5017 (2021).

  40. S.K. Singh, K. Mahesh, A.K. Gupta, Mater. Design 31, 2288 (2010)

  41. T.-W. Hong, S.-I. Lee, J.-H. Shim, M.-G. Lee, J. Lee, B. Hwang, Met. Mater. Int. 27, 3935 (2021)

  42. Y.V. Deshpande, A.B. Andhare, P.M. Padole, SN Appl, Sci. 1, 104 (2019)

  43. E. Maleki, O. Unal, M. Guagliano, S. Bagherifard, Met. Mater. Int. 28, 112 (2022)

  44. E. Maleki, O. Unal, Met. Mater. Int. 27, 262 (2021)

    Article  CAS  Google Scholar 

  45. E. Maleki, O. Unal, Met. Mater. Int. 27, 3173 (2021)

    Article  Google Scholar 

  46. N. Wang, S.-T. Tu, F.-Z. Xuan, Eng. Fail. Anal. 31, 302 (2013)

  47. T. Liang, X. Liu, P. Fan, L. Zhu, Y. Bi, Y. Zhang, Int. J. Pres. Ves. Pip. 179, 104014 (2020)

  48. J. Zhong, C. Yang, W. Ma, Z. Zhang, Polym. Test. 93, 106893 (2021)

  49. Y.I. Kwon, B.S. Lim, Met. Mater. Int. 7, 311 (2001)

  50. A. Ghatak, P.S. Robi, Neural Comput. Appl. 30, 2953 (2018)

    Article  Google Scholar 

  51. D. Srivastava, G.K. Dey, S. Banerjee, Metall. Mater. Trans. A 26, 2707 (1995)

    Article  Google Scholar 

  52. B.S. Rodchenkov, A.N. Semenov, Nucl. Eng. Des. 235, 2009 (2005)

    Article  CAS  Google Scholar 

  53. A. Ghatak, Creep correlation of micro-alloyed HP40Nb reformerer steel, Ph.D. thesis, Indian Institute of Technology Guwahati (2015)

  54. G.E. Dieter, Mechanical Metallurgy SI Metric Edn. (McGraw-Hill, New York, 1988)

  55. G.D. Garson, AI Expert 6, 46 (1991)

  56. K. Guguloth, R. Mitra, S.G. Chowdhury, J. Swaminathan, Mater. Sci. Eng. A 721, 286 (2018)

    Article  CAS  Google Scholar 

  57. S.V. Shukla, C. Chandrashekharayya, R.N. Singh, R. Fotedar, R. Kishore, T.K. Sinha, B.P. Kashyap, J. Nucl. Mater. 273, 130 (1999)

    Article  CAS  Google Scholar 

  58. A. J. Lockley, R. E. Mayville, Microsc. Microanal. 8, 1308 (2002)

  59. B. Kombaiah, K.L. Murty, Metall. Mater. Trans. A 46, 4646 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to BARC, India, for providing the Zr–2.5Nb tubes necessary for the study. The authors express their sincere thanks to the staff of the central workshop, IIT Guwahati, for the help extended in the preparation of test samples and carrying out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saptarshi Dutta.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 5.

Table 5 Comparison of results during the training and testing processes of ANN

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Robi, P.S. Experimental Investigation and Modeling of Creep Curve of Zr–2.5Nb Alloy by Machine Learning Techniques. Met. Mater. Int. 28, 2884–2897 (2022). https://doi.org/10.1007/s12540-022-01182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01182-z

Keywords

Navigation