Skip to main content
Log in

Evolution of Phases and their Influence on Shape Memory Effect by Varying Sintering Parameters of NiTi Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

NITINOL is the most popular and economic shape memory alloy (SMA) used in various industries. For temperature associated applications, the shape memory effect (SME) is the major phenomenon for the shape and strain recovery of materials after deformation. The machinability and cold working ability of NiTi alloys are poor compared to conventional alloys. So to reduce the post-processing of the finished product with good homogenization of elements, the powder technology route is suitable for making these SMAs. Due to the simplicity and cost-effectiveness, the uniaxial press and sinter process was used for pellet making. In this paper, before sintering 450, 475, 500, 525, 550, 575 and 600 MPa compaction pressures were analysed by their green densities and 600 MPa compacted pellet yielded the better density. Sintering was done at 950, 1000, 1050, 1100 and 1150 °C with the variation of sintering time 0.5, 1, 1.5 and 2 h. The XRD and SEM studies showed that samples sintered at 950 °C have oxide phases with elemental Ni and Ni3Ti phases. For samples sintered at 1000, 1050 and 1100 °C, NiTi and Ti2Ni formed as major phases with minor phases of βTi and Ni4Ti3 precipitates formed inside the NiTi matrix. It was difficult to detect the minor phases for the sample sintered at 1150 °C. Needle shaped martensitic NiTi forms inside the austenitic NiTi matrix and was detected at a very high magnification of 5000× in SEM. From the Differential Scanning Calorimetry study, it was found that an increase in sintering time and sintering temperature results in a faster shape memory response.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Sharma, G. Srinivas, Flying smart: Smart materials used in aviation industry. Mater. Today Proc. 27, 244–250 (2020). https://doi.org/10.1016/j.matpr.2019.10.115

    Article  CAS  Google Scholar 

  2. NiTi Alloy Ball Bearings. https://technology.nasa.gov/patent/LEW-TOPS-129. Accessed 12 Mar 2020

  3. B. Swain, S. Bajpai, A. Behera, Microstructural evolution of NITINOL and their species formed by atmospheric plasma spraying. Surf. Topogr. Metrol. Prop. 7, 015006 (2019). https://doi.org/10.1088/2051-672X/aaf30e

    Article  CAS  Google Scholar 

  4. C. Chluba, K. Siemsen, C. Bechtold, C. Zamponi, C. Selhuber-Unkel, E. Quandt, R. Lima de Miranda, Microfabricated bioelectrodes on self-expandable NiTi thin film devices for implants and diagnostic instruments. Biosens. Bioelectron. 153, 112034 (2020). https://doi.org/10.1016/j.bios.2020.112034

    Article  CAS  Google Scholar 

  5. C.R. Knick, G.L. Smith, C.J. Morris, H.A. Bruck, Rapid and low power laser actuation of sputter-deposited NiTi shape memory alloy (SMA) MEMS thermal bimorph actuators. Sensor. Actuat. A Phys. 291, 48–57 (2019). https://doi.org/10.1016/j.sna.2019.03.016

    Article  CAS  Google Scholar 

  6. S. Kim, E. Hawkes, K. Choy, M. Joldaz, J. Foleyz, R. Wood, Micro artificial muscle fiber using NiTi spring for soft robotics, in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, St. Louis, 10-15 October 2009 (IEEE, New York, 2009), pp. 2228–2234

  7. R. Neupane, Z. Farhat, Wear mechanisms of nitinol under reciprocating sliding contact. Wear 315, 25–30 (2014). https://doi.org/10.1016/j.wear.2014.02.018

    Article  CAS  Google Scholar 

  8. W.J. Buehler, F.E. Wang, A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng. 1, 105–120 (1968). https://doi.org/10.1016/0029-8018(68)90019-x

    Article  Google Scholar 

  9. R. Snodgrass, D. Erickson, A multistage elastocaloric refrigerator and heat pump with 28 K temperature span. Sci. Rep. 9, 18532 (2019). https://doi.org/10.1038/s41598-019-54411-8

    Article  CAS  Google Scholar 

  10. L. Zhang, Z.Y. He, J. Tan, Y.Q. Zhang, M. Stoica, K.G. Prashanth, M.J. Cordill, Y.H. Jiang, R. Zhou, J. Eckert, Rapid fabrication of function-structure-integrated NiTi alloys: Towards a combination of excellent superelasticity and favorable bioactivity. Intermetallics 82, 1–13 (2017). https://doi.org/10.1016/j.intermet.2016.11.004

    Article  CAS  Google Scholar 

  11. S.K. Patel, B. Behera, B. Swain, R. Roshan, D. Sahoo, A. Behera, A review on NiTi alloys for biomedical applications and their biocompatibility. Mater. Today Proc. 33, 5548–5551 (2020). https://doi.org/10.1016/j.matpr.2020.03.538

    Article  CAS  Google Scholar 

  12. M.T. Andani, N.S. Moghaddam, C. Haberland, D. Dean, M.J. Miller, M. Elahinia, Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater. 10, 4058–4070 (2014). https://doi.org/10.1016/j.actbio.2014.06.025

    Article  CAS  Google Scholar 

  13. G. Helbert, L. Dieng, S.A. Chirani, L. Saint-Sulpice, T. Lecompte, S. Calloch, Investigation of NiTi based damper effects in bridge cables vibration response: Damping capacity and stiffness changes. Eng. Struct. 165, 184–197 (2018). https://doi.org/10.1016/j.engstruct.2018.02.087

    Article  Google Scholar 

  14. O. Ammar, N. Haddar, L. Dieng, Experimental investigation of the pseudoelastic behaviour of NiTi wires under strain- and stress-controlled cyclic tensile loadings. Intermetallics 81, 52–61 (2017). https://doi.org/10.1016/j.intermet.2017.03.002

    Article  CAS  Google Scholar 

  15. M. Xia, Q. Sun, Jump phenomena of rotational angle and temperature of NiTi wire in nonlinear torsional vibration. Int. J. Solids Struct. 56, 220–234 (2015). https://doi.org/10.1016/j.ijsolstr.2014.11.002

    Article  CAS  Google Scholar 

  16. W. Tang, Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti–Ni shape memory alloys. Metall. Mater. Trans. A 28, 537–544 (1997). https://doi.org/10.1007/s11661-997-0041-6

    Article  Google Scholar 

  17. B. Swain, P. Mallick, S.K. Bhuyan, S.S. Mohapatra, S.C. Mishra, A. Behera, Mechanical properties of NiTi plasma spray coating. J. Therm. Spray Techn. 29, 741–755 (2020). https://doi.org/10.1007/s11666-020-01017-6

    Article  CAS  Google Scholar 

  18. B.C. Hornbuckle, X.X. Yu, R.D. Noebe, R. Martens, M.L. Weaver, G.B. Thompson, Hardening behavior and phase decomposition in very Ni-rich Nitinol alloys. Mater. Sci. Eng. A 639, 336–344 (2015). https://doi.org/10.1016/j.msea.2015.04.079

    Article  CAS  Google Scholar 

  19. C. DellaCorte, F. Thomas, M.K. Stanford, Method for making small diameter nickel-titanium metal alloy balls, US Patent 11033963 (2021)

  20. B. Bertheville, M. Neudenberger, J.-E. Bidaux, Powder sintering and shape-memory behaviour of NiTi compacts synthesized from Ni and TiH2. Mater. Sci. Eng. A 384, 143–150 (2004). https://doi.org/10.1016/j.msea.2004.06.025

    Article  CAS  Google Scholar 

  21. M.H. Ismail, R. Goodall, H.A. Davies, I. Todd, Porous NiTi alloy by metal injection moulding/sintering of elemental powders: Effect of sintering temperature. Mater. Lett. 70, 142–145 (2012). https://doi.org/10.1016/j.matlet.2011.12.008

    Article  CAS  Google Scholar 

  22. G. Chen, P. Cao, N. Edmonds, Porous NiTi alloys produced by press-and-sinter from Ni/Ti and Ni/TiH2 mixtures. Mater. Sci. Eng. A 582, 117–125 (2013). https://doi.org/10.1016/j.msea.2013.05.082

    Article  CAS  Google Scholar 

  23. K. Khanlari, M. Ramezani, P. Kelly, P. Cao, T. Neitzert, Mechanical and microstructural characteristics of as-sintered and solutionized porous 60NiTi. Intermetallics 100, 32–43 (2018). https://doi.org/10.1016/j.intermet.2018.06.001

    Article  CAS  Google Scholar 

  24. R. Singh, A.K. Sharma, A.K. Sharma, Physical and mechanical behavior of NiTi composite fabricated by newly developed uni-axial compaction die. Mater. Res. 24, e20200549 (2021). https://doi.org/10.1590/1980-5373-MR-2020-0549

    Article  Google Scholar 

  25. T. Lai, J.-L. Xu, Q.-F. Xiao, Y.-X. Tong, J. Huang, J.-P. Zhang, J.-M. Luo, Y. Liu, Preparation and characterization of porous NiTi alloys synthesized by microwave sintering using Mg space holder. T. Nonferr Metal. Soc. China 31, 485–498 (2021). https://doi.org/10.1016/S1003-6326(21)65511-5

    Article  CAS  Google Scholar 

  26. D.V.V. Satyanarayana, N. Eswara Prasad, Nickel-based superalloys, in Aerospace Materials and Material Technologies, vol. 1, ed. by N.E. Prasad, R.J.H. Wanhill (Springer, Singapore, 2017), pp. 199–228

  27. B. Yin, G. Xie, L. Lou, J. Zhang, Abnormal increase of TCP phase during heat treatment in a Ni-based single crystal superalloy. Scripta Mater. 173, 1–4 (2019). https://doi.org/10.1016/j.scriptamat.2019.07.027

    Article  CAS  Google Scholar 

  28. L.M. Bortoluci Ormastroni, L. Mataveli Suave, A. Cervellon, P. Villechaise, J. Cormier, LCF, HCF and VHCF life sensitivity to solution heat treatment of a third-generation Ni-based single crystal superalloy. Int. J. Fatigue 130, 105247 (2020). https://doi.org/10.1016/j.ijfatigue.2019.105247

    Article  CAS  Google Scholar 

  29. I. Lopez-Galilea, B. Ruttert, J. He, T. Hammerschmidt, R. Drautz, B. Gault, W. Theisen, Additive manufacturing of CMSX-4 Ni-base superalloy by selective laser melting: Influence of processing parameters and heat treatment. Addit. Manuf. 30, 100874 (2019). https://doi.org/10.1016/j.addma.2019.100874

    Article  CAS  Google Scholar 

  30. B. Swain, P. Mallick, S. Patel, R. Roshan, S.S. Mohapatra, S. Bhuyan, M. Priyadarshini, B. Behera, S. Samal, A. Behera, Failure analysis and materials development of gas turbine blades. Mater. Today Proc. 33, 5143–5146 (2020). https://doi.org/10.1016/j.matpr.2020.02.859

    Article  CAS  Google Scholar 

  31. B. Swain, P. Mallick, Ram K. Gupta, S.S. Mohapatra, G. Yasin, T.A. Nguyen, Ajit Behera, Mechanical and tribological properties evaluation of plasma-sprayed shape memory alloy coating. J. Alloy. Compd. 863, 158599 (2021). https://doi.org/10.1016/j.jallcom.2021.158599

    Article  CAS  Google Scholar 

  32. C. Fu, Y. Chen, L. Li, S. Antonov, Q. Feng, Evaluation of service conditions of high pressure turbine blades made of DS Ni-base superalloy by artificial neural networks. Mater. Today Commun. 22, 100838 (2020). https://doi.org/10.1016/j.mtcomm.2019.100838

    Article  CAS  Google Scholar 

  33. J. Belan, A. Vaško, E. Tillová, Microstructural analysis of DV - 2 Ni - base superalloy turbine blade after high temperature damage. Procedia Engineer. 177, 482–487 (2017). https://doi.org/10.1016/j.proeng.2017.02.249

    Article  CAS  Google Scholar 

  34. N. Taheri, H. Naffakh-Moosavy, F.M. Ghaini, A new procedure for refurbishment of power plant superalloy 617 by pulsed Nd:YAG laser process. Opt. Laser Technol. 91, 71–79 (2017). https://doi.org/10.1016/j.optlastec.2016.12.013

    Article  CAS  Google Scholar 

  35. P.M. Mignanelli, N.G. Jones, E.J. Pickering, O.M.D.M. Messé, C.M.F. Rae, M.C. Hardy, H.J. Stone, Gamma-gamma prime-gamma double prime dual-superlattice superalloys. Scripta Mater. 136, 136–140 (2017). https://doi.org/10.1016/j.scriptamat.2017.04.029

    Article  CAS  Google Scholar 

  36. S.K. Patel, B. Swain, A. Behera, Advanced processing of superalloys for aerospace industries, in Functional and Smart Materials, 1st edn., ed. by C. Prakash, S. Singh, J.P. Davim (CRC Press, Boca Raton, 2020), pp. 109–122

  37. B. Swain, P. Mallick, S.S. Mohapatra, A. Behera, D.K. Rajak, P.L. Menezes, Atmospheric plasma spray coating of NiTi on mild steel substrate: An microstructural investigation. J. Bio Tribo Corros. 7, 104 (2021). https://doi.org/10.1007/s40735-021-00541-4

    Article  Google Scholar 

  38. K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005). https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  CAS  Google Scholar 

  39. M. Farvizi, M.K. Javan, M.R. Akbarpour, H.S. Kim, Fabrication of NiTi and NiTi-nano Al2O3 composites by powder metallurgy methods: Comparison of hot isostatic pressing and spark plasma sintering techniques. Ceram. Int. 44, 15981–15988 (2018). https://doi.org/10.1016/j.ceramint.2018.06.025

    Article  CAS  Google Scholar 

  40. X. Li, X. Chen, C. Zhang, J. Luo, Preparation of self-lubricating NiTi alloy and its self-adaptive behavior. Tribol. Int. 130, 43–51 (2019). https://doi.org/10.1016/j.triboint.2018.09.002

    Article  CAS  Google Scholar 

  41. P. Bassani, S. Panseri, A. Ruffini, M. Montesi, M. Ghetti, C. Zanotti, A. Tampieri, A. Tuissi , Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3. J. Mater. Sci. Mater. M. 25, 2277–2285 (2014). https://doi.org/10.1007/s10856-014-5253-x

    Article  CAS  Google Scholar 

  42. C.Y. Tang, L.N. Zhang, C.T. Wong, K.C. Chan, T.M. Yue, Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering. Mater. Sci. Eng. A 528, 6006–6011 (2011). https://doi.org/10.1016/j.msea.2011.04.040

    Article  CAS  Google Scholar 

  43. G. Wen, P. Cao, B. Gabbitas, D. Zhang, N. Edmonds, Development and design of binder systems for titanium metal injection molding: An overview. Metall. Mater. Trans. A 44, 1530–1547 (2013). https://doi.org/10.1007/s11661-012-1485-x

    Article  CAS  Google Scholar 

  44. G. Tosun, M. Kilic, L. Ozler, N. Tosun, Characterization of a porous Nickel-Titanium alloy produced with self-propagating high-temperature synthesis. Mater. Tehnol. 52, 435–442 (2018). https://doi.org/10.17222/mit.2017.156

    Article  CAS  Google Scholar 

  45. ASTM B962-13, Standard test methods for density of compacted or sintered powder metallurgy (PM) products using archimedes’ principle (ASTM International, West Conshohocken, 2013)

  46. A.A. Atiyah, A.-R.K.A. Ali, N.M. Dawood, Characterization of NiTi and NiTiCu porous shape memory alloys prepared by powder metallurgy (part I). Arab. J. Sci. Eng. 40, 901–913 (2015). https://doi.org/10.1007/s13369-014-1538-0

    Article  CAS  Google Scholar 

  47. S. Ozan, K. Munir, A. Biesiekierski, R. Ipek, Y. Li, C. Wen, Titanium alloys, including Nitinol, in Biomaterials Science, 4th edn, ed.by W.R.Wagner et al. (Accadical Press, Cambridge, 2020), pp. 229–247

  48. R.R. Boyer, Aerospace applications of beta titanium alloys. JOM 46, 20–23 (1994). https://doi.org/10.1007/BF03220743

    Article  Google Scholar 

  49. W.-Y. Kai, K.-C. Chang, H.-F. Wu, S.-W. Chen, A.-C. Yeh, Formation mechanism of Ni2Ti4Ox in NITI shape memory alloy. Materialia 5, 100194 (2019). https://doi.org/10.1016/j.mtla.2018.100194

    Article  CAS  Google Scholar 

  50. S.R. Soundararajan, J. Vishnu, G. Manivasagam, N.R. Muktinutalapati, Processing of beta titanium alloys for aerospace and biomedical applications, in Titanium Alloys—Novel Aspects of Their Manufacturing and Processing, ed. by M. Motyka, W. Ziaja, J. Sieniawsk (IntechOpen, London, 2018)

  51. M. Abdel-Hady Gepreel, M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 20, 407–415 (2013). https://doi.org/10.1016/j.jmbbm.2012.11.014

    Article  CAS  Google Scholar 

  52. S. Conti, M. Lenz, N. Lüthen, M. Rumpf, B. Zwicknagl, Geometry of martensite needles in shape memory alloys. Comptes Rendus Math. 358, 1047–1057 (2020). https://doi.org/10.5802/CRMATH.120

    Article  Google Scholar 

  53. S. Kumar Patel, B. Swain, R. Roshan, N.K. Sahu, A. Behera, A brief review of shape memory effects and fabrication processes of NiTi shape memory alloys. Mater. Today Proc. 33, 5552–5556 (2020). https://doi.org/10.1016/j.matpr.2020.03.539

    Article  CAS  Google Scholar 

  54. Y. Guo, A. Klink, C. Fu, J. Snyder, Machinability and surface integrity of Nitinol shape memory alloy. CIRP Ann. 62, 83–86 (2013). https://doi.org/10.1016/j.cirp.2013.03.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Behera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.K., Behera, A. Evolution of Phases and their Influence on Shape Memory Effect by Varying Sintering Parameters of NiTi Alloys. Met. Mater. Int. 28, 2691–2705 (2022). https://doi.org/10.1007/s12540-021-01166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01166-5

Keywords

Navigation