Skip to main content
Log in

Image Texture Description, Surface-Grains Structure Morphology and Prediction of Wear Parameters for Mg/B4C Composites Using Response Surface Methodology

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The different percentages of boron carbide (B4C) reinforced Magnesium metal matrix composites were processed using Powder Metallurgy method. The characterizations are performed by Scanning Electronic Microscope (SEM), X-ray Diffraction pattern, Electron Backscattered Diffraction, and Energy Dispersive Spectrum. The texture analysis of the composites is conducted via an image processing method. Wear tests are executed in the dry sliding state under ambient room conditions. The three levels Box-Behnken design of Response Surface Methodology has been selected to create the mathematical models for the three variables (weight percentage of B4C, sliding velocity, and load) to predict the responses namely specific wear rate (SWR) and coefficient of friction (COF). The developed model is validated and analyzed through the Analysis of variance (ANOVA). This model has a 95% efficient confidence to forecast the COF and SWR. The worn surface features are extracted and analyzed through an image processing technique. The roughness measurement of the worn surfaces is executed via Atomic Force Microscopy analysis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. H. Hu, A. Yu, N. Li, J.E. Allison, Mater. Manuf. Process. 18, 687 (2003)

    Article  CAS  Google Scholar 

  2. V. Kavimani, K.S. Prakash, T. Thankachan, Compos. Part B Eng. 162, 508 (2019)

    Article  CAS  Google Scholar 

  3. Y. Yao, L. Chen, J. Mater. Sci. Technol. 30, 661 (2014)

    Article  CAS  Google Scholar 

  4. B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302, 37 (2001)

    Article  Google Scholar 

  5. M. Gupta, W.L.E. Wong, Mater. Charact. 105, 30 (2015)

    Article  CAS  Google Scholar 

  6. C.M. Anand Partheeban, M. Rajendran, S.C. Vettivel, S. Suresh, N.S.V. Moorthi, Mater. Sci. Eng. A 632, 1 (2015)

    Article  CAS  Google Scholar 

  7. M.E. Turan, Y. Sun, Y. Akgul, Y. Turen, H. Ahlatci, J. Alloy. Compd. 724, 14 (2017)

    Article  CAS  Google Scholar 

  8. M. Navaneetha Krishnan, S. Suresh, S.C. Vettivel, J. Alloy. Compd. 747, 324 (2018)

    Article  CAS  Google Scholar 

  9. E. Ghasali, M. Alizadeh, M. Niazmand, T. Ebadzadeh, J. Alloy. Compd. 697, 200 (2017)

    Article  CAS  Google Scholar 

  10. B. Selvam, P. Marimuthu, R. Narayanasamy, V. Anandakrishnan, K.S. Tun, M. Gupta, M. Kamaraj, Mater. Design 58, 475 (2014)

    Article  CAS  Google Scholar 

  11. Q.C. Jiang, H.Y. Wang, B.X. Ma, Y. Wang, F. Zhao, J. Alloy. Compd. 386, 177 (2005)

    Article  CAS  Google Scholar 

  12. Z. Liu, X. Deng, J. Li, Y. Sun, S. Ran, Ceram. Int. 44, 21415 (2018)

    Article  CAS  Google Scholar 

  13. M. Navaneetha Krishnan, S. Suresh, S.C. Vettivel, T. Indian I. Metals 73, 897 (2020)

    Article  CAS  Google Scholar 

  14. H. Dieringa, J. Mater. Sci. 46, 289 (2011)

    Article  CAS  Google Scholar 

  15. S. Suresh, M. Navaneetha Krishnan, S.C. Vettivel, J. Magnes. Alloy. (2020). https://doi.org/10.1016/j.jma.2020.09.010

    Article  Google Scholar 

  16. Y.T. Yao, L. Jiang, G.F. Fu, L.Q. Chen, T. Nonferr. Metal. Soc. 25, 2543 (2015)

    Article  CAS  Google Scholar 

  17. I. Manivannan, S. Ranganathan, S. Gopalakannan, S. Suresh, T. Indian I. Metals 7, 1897 (2018)

    Article  CAS  Google Scholar 

  18. A. Asgari, M. Sedighi, P. Krajnik, J. Clean. Prod. 232, 1187 (2019)

    Article  CAS  Google Scholar 

  19. S.C. Vettivel, N. Selvakumar, N. Leema, Mater. Design 45, 323 (2013)

    Google Scholar 

  20. M. Navaneetha Krishnan, S. Suresh, S.C. Vettivel, C. Emmy Prema, C.P. Jesuthanam, T. Indian I. Metals 74, 51–68 (2021)

    Article  CAS  Google Scholar 

  21. Y. Yan, H. Cao, Y. Kang, K. Yu, T. Xiao, J. Luo, Y. Deng, H. Fang, H. Xiong, Y. Dai, J. Alloy. Compd. 693, 1277 (2016)

    Article  CAS  Google Scholar 

  22. P. Narayanasamy, N. Selvakumar, P. Balasundar, T. Indian I. Metals 68, 911 (2015)

    Article  CAS  Google Scholar 

  23. M.E. Turan, H. Zengin, Y. Sun, Met. Mater. Int. 26, 541 (2020)

    Article  CAS  Google Scholar 

  24. S.C. Vettivel, N. Selvakumar, R. Narayanasamy, N. Leema, Mater. Design 50, 977 (2013)

    Article  CAS  Google Scholar 

  25. M. Balasubramanian, V. Jayabalan, V. Balasubramanian, Mater. Design 29, 92 (2008)

    Article  CAS  Google Scholar 

  26. S. Suresh, N. Shenbaga Vinayaga Moorthi, S.C. Vettivel, N. Selvakumar, Mater. Design 59, 383 (2014)

    Article  CAS  Google Scholar 

  27. K. Manonmani, N. Murugan, G. Buvanasekaran, Int. J. Adv. Manuf. Tech. 32, 1125 (2007)

    Article  Google Scholar 

  28. P. Tirumalpathy, K. Vivekanand, M. Leroy, S. Binil, J. Manuf. Process. 13, 104 (2011)

    Article  Google Scholar 

  29. L.G. Robin, K. Raghukandan, S. Saravanan, Met. Mater. Int. 27, 3493 (2021)

    Article  Google Scholar 

  30. H. Liu, K. Wang, P. Li, C. Zhang, D. Du, Y. Hu, X. Wang, Opt. Laser. Eng. 50, 440 (2012)

    Article  Google Scholar 

  31. J. Grum, J.M. Slabe, J. Mater. Process. Tech. 155, 2026 (2004)

    Article  CAS  Google Scholar 

  32. M.Z. Butt, D. Ali, M. Aftab, F. Bashir, M.S. Pervaiz, M.U. Tanveer, M.W. Khaliq, Met. Mater. Int. 27, 3342 (2021) 

    Article  Google Scholar 

  33. P. Samyn, G. Schoukens, P. De Baets, Wear 270, 57 (2010)

    Article  CAS  Google Scholar 

  34. Malay K. Pakhira, Digital Image Processing and Pattern Recognition, 2nd edn. (PHI Learning Privite Limites, Delhi, 2014), pp. 1–528

    Google Scholar 

  35. S. Jayaraman, S. Esakkirajan, T. Veerakumar, Digital Image Processing, 3rd edn. (Tata McGraw Hill Education Private Limited, New Delhi, 2009), pp. 1–719

    Google Scholar 

  36. R.Y. Kosarevych, O. Student, L. Svirska, B. Rusyn, H. Nykyforchyn, Mater. Sci. 48, 474 (2013)

    Article  Google Scholar 

  37. M. Bastidas-Rodriguez, F. Prieto-Ortiz, E. Espejo, Eng. Fail. Anal. 59, 237 (2016)

    Article  CAS  Google Scholar 

  38. D.L. Naik, R. Kiran, Eng. Fract. Mech. 219, 106618 (2019)

    Article  Google Scholar 

  39. S. Rajakumar, C. Muralidharan, V. Balasubramanian, Mater. Design 32, 2878 (2011)

    Article  CAS  Google Scholar 

  40. W.P. Gardiner, G. Gettinby, Experimental Design Techniques in Statistical Practice (Horwood Press, Chichester, 1998), pp. 1–390

    Book  Google Scholar 

  41. B. Saleh, J. Jiang, Q. Xu, R. Fathi, A. Ma, Y. Li, L. Wang, Met. Mater. Int. 27, 2879 (2021)

    Article  Google Scholar 

  42. S. Sardar, D. Das, Met. Mater. Int. 27, 1859 (2021)

    Article  Google Scholar 

  43. A.K. Lakshminarayanan, V. Balasubramanian, T. Nonferr. Metal. Soc. 19, 9 (2009)

    Article  CAS  Google Scholar 

  44. C.M.L. Christopher, T. Sasikumar, S. Suresh, J. Alloy. Compd. 778, 951 (2019)

    Article  CAS  Google Scholar 

  45. K. Velmanirajan, A. Syed Abu Thaheer, R. Narayanasamy, C. Ahamed Basha, Mater. Design 41, 239 (2012)

    Article  CAS  Google Scholar 

  46. D. Roy, B. Basu, A.B. Mallick, Intermetallics 13, 733 (2005)

    Article  CAS  Google Scholar 

  47. S. Anbuselvan, S. Ramanathan, Mater. Design 31, 1930 (2010)

    Article  CAS  Google Scholar 

  48. A. Gebejes, R. Huertas, Texture characterization based on grey-level co-occurrence matrix, in Proceedings of the 2nd International Conference of Informatics and Management Sciences ICTIC 2013, Catania, 25–29 March, 2013, pp. 375–378

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Amrita College of Engineering and Technology, Amritagiri and University College of Engineering Nagercoil for providing the facilities to carry out this research work.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection and analysis were performed by [MN], [SS], [SV], [CE], [JA] and [PT]. The first draft of the manuscript was written by [MN and SS] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Suresh.

Ethics declarations

Conflict of interest

No conflict of interest exists. We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Consent to participate

Not Applicable.

Consent for Publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, M.N., Suresh, S., Vettivel, S.C. et al. Image Texture Description, Surface-Grains Structure Morphology and Prediction of Wear Parameters for Mg/B4C Composites Using Response Surface Methodology. Met. Mater. Int. 28, 1195–1214 (2022). https://doi.org/10.1007/s12540-021-01042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01042-2

Keywords

Navigation